
LabVIEWTM Basics I
Development Course Manual

Course Software Version 8.0
October 2005 Edition
Part Number 320628N-01

LabVIEW Introduction Course Manual

Copyright

© 1993–2005 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

In regards to components used in USI (Xerces C++, ICU, and HDF5), the following copyrights apply. For a listing of the conditions and
disclaimers, refer to the USICopyrights.chm.

This product includes software developed by the Apache Software Foundation (http:/www.apache.org/).
Copyright

© 1999 The Apache Software Foundation. All rights reserved.

Copyright © 1995–2003 International Business Machines Corporation and others. All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your CD, or ni.com/legal/patents.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091,
Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150,
Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200,
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51,
Taiwan 886 02 2377 2222, Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback.

© National Instruments Corporation iii LabVIEW Introduction Course Manual

Contents

Student Guide
A. About This Manual ...viii
B. What You Need to Get Started ...viii
C. Installing the Course Software..ix
D. Course Goals...x
E. Course Conventions ..x

Lesson 1
Problem Solving

A. Software Development Method ..1-2
B. Scenario ..1-2
C. Design ...1-2
D. Implementation ...1-7
E. Testing ..1-8
F. Maintenance..1-8
Exercise 1-1 Software Development Method..1-9
Exercise 1-2 Project: State Transition Diagram ..1-11
G. Project ...1-14

Lesson 2
Navigating LabVIEW

A. Virtual Instruments (VIs)..2-2
B. Parts of a VI ..2-2
C. Starting a VI..2-4
D. Project Explorer ..2-8
E. Front Panel ..2-12
F. Block Diagram..2-18
Exercise 2-1 Concept: Exploring a VI...2-25
G. Searching for Controls, VIs, and Functions..2-26
Exercise 2-2 Concept: Navigating Palettes ...2-28
H. Selecting a Tool ..2-29
Exercise 2-3 Concept: Selecting a Tool ..2-35
I. Dataflow..2-39
Exercise 2-4 Concept: Dataflow..2-41
J. Building a Simple VI ..2-42
Exercise 2-5 Simple AAP VI...2-46
K. LabVIEW Help Utilities ...2-57
Exercise 2-6 Concept: Using Help ..2-61

Contents

LabVIEW Introduction Course Manual iv ni.com

Lesson 3
Implementing a VI

A. Front Panel Design..3-2
Exercise 3-1 Project: Weather Station UI VI ..3-9
B. Block Diagram Terminals...3-14
C. Documenting Code ...3-22
Exercise 3-2 Project: Determine Warnings VI ..3-25
D. While Loops..3-32
Exercise 3-3 Auto Match VI..3-35
E. For Loops ..3-41
Exercise 3-4 Concept: While Loops versus For Loops ...3-44
F. Timing a VI...3-47
G. Iterative Data Transfer ..3-48
Exercise 3-5 Average Temperature VI..3-51
H. Plotting Data ...3-55
Exercise 3-6 Temperature Multiplot VI ..3-61
I. Case Structures ...3-66
Exercise 3-7 Project: Determine Warnings VI ..3-71
J. Formula Nodes..3-78
Exercise 3-8 Optional: Square Root VI...3-80
Exercise 3-9 Optional: Determine Warnings Challenge VI3-84
Exercise 3-10 Optional: Determine More Warnings VI..3-87

Lesson 4
Relating Data

A. Arrays..4-2
Exercise 4-1 Concept: Manipulating Arrays ...4-8
B. Clusters ...4-15
Exercise 4-2 Concept: Clusters..4-21
Exercise 4-3 Project: Weather Station UI VI ..4-26
C. Type Definitions ...4-29
Exercise 4-4 Project: Weather Station CTL ..4-33

Lesson 5
Debugging VIs

A. Correcting Broken VIs..5-2
B. Debugging Techniques ...5-4
C. Undefined or Unexpected Data...5-11
D. Error Checking and Error Handling..5-12
Exercise 5-1 Concept: Debugging...5-16

Contents

© National Instruments Corporation v LabVIEW Introduction Course Manual

Lesson 6
Developing Modular Applications

A. What is Modularity? ...6-2
B. Icon and Connector Pane ..6-4
C. Using SubVIs ..6-9
Exercise 6-1 Project: Determine Warnings VI ..6-11
Self-Review: Quiz...6-17
Self-Review: Quiz Answers..6-19

Lesson 7
Measurement Fundamentals

A. Computer-Based Measurement Systems ..7-2
B. Measurement Concepts...7-4
C. Increasing Measurement Quality ..7-12
Exercise 7-1 Concepts: Measurement Fundamentals..7-18

Lesson 8
Data Acquisition

A. Hardware...8-2
B. Software Architecture ...8-5
C. Simulating a DAQ Device ..8-8
Exercise 8-1 Concept: MAX ...8-9
D. Analog Input ...8-15
Exercise 8-2 Triggered Analog Input VI ..8-17
E. Analog Output...8-22
F. Counters ..8-23
Exercise 8-3 Count Events VI ..8-25
G. Digital I/O ...8-28
Exercise 8-4 Optional: Digital Count VI ..8-29
Self-Review: Quiz...8-33

Lesson 9
Instrument Control

A. Instrument Control ..9-2
B. GPIB ...9-2
C. Serial Port Communication...9-3
D. Using Other Interfaces ..9-6
E. Software Architecture ...9-7
Exercise 9-1 Concept: GPIB Configuration with MAX9-9

Contents

LabVIEW Introduction Course Manual vi ni.com

F. Instrument I/O Assistant ...9-12
Exercise 9-2 Concept: Instrument I/O Assistant ..9-14
G. VISA ...9-23
Exercise 9-3 VISA Write & Read VI ...9-26
H. Instrument Drivers ..9-29
Exercise 9-4 Concept: Instrument Driver..9-32

Lesson 10
Analyzing and Storing Measurement Data

A. Analyzing and Processing Numeric Data ...10-2
Exercise 10-1 Concept: Analysis Types..10-7
B. Reading and Writing Data to File ...10-9
Exercise 10-2 Optional: Read VCard VI...10-13
Self-Review: Quiz Answers..10-29

Lesson 11
Common Design Techniques and Patterns

A. Sequential Programming...11-2
B. State Programming ...11-4
C. State Machines ..11-5
Exercise 11-1 Project: Temperature Weather Station ...11-12
D. Parallelism ..11-28
Summary...11-29

Appendix A
Additional Information and Resources

Index

Course Evaluation

© National Instruments Corporation vii LabVIEW Introduction Course Manual

Student Guide

Thank you for purchasing the LabVIEW Basics I: Introduction course kit.
You can begin developing an application soon after you complete the
exercises in this manual. This course manual and the accompanying
software are used in the three-day, hands-on LabVIEW Basics I:
Introduction course.

You can apply the full purchase of this course kit toward the corresponding
course registration fee if you register within 90 days of purchasing the kit.
Visit ni.com/training for online course schedules, syllabi, training
centers, and class registration.

Note For course manual updates and corrections, refer to ni.com/info and enter the
info code rdlvce.

The LabVIEW Basics I: Introduction course is part of a series of courses
designed to build your proficiency with LabVIEW and help you prepare for
NI LabVIEW certification exams. The following illustration shows the
courses that are part of the LabVIEW training series. Refer to
ni.com/training for more information about NI Certification.

LabVIEW Intermediate I*

LabVIEW Intermediate II*

New User Experienced User Advanced User

LabVIEW Advanced
Application Development

LabVIEW Advanced
Application Development

Certified LabVIEW
Associate Developer Exam

Certified LabVIEW
Developer Exam

Certified LabVIEW
Architect Exam

Skills tested:
• LabVIEW application
 development expertise

Skills learned:
• Modular application development
• Structured design and
 development practices
• Memory management and VI
 performance improvement

Skills learned:
• Large application design
• Code reuse maximization
• Object-oriented programming
 in LabVIEW

Skills tested:
• LabVIEW application
 development mastery

Skills tested:
• LabVIEW environment
 knowledge

Skills learned:
• LabVIEW environment
 navigation
• Basic application creation
 using LabVIEW

Certifications

Courses

Hardware-Based Courses:
• Data Acquisition and Signal Conditioning • Modular Instruments • Instrument Control • Machine Vision
• Motion Control • LabVIEW Real-Time

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

LabVIEW Basics I*

Skills learned:
• LabVIEW environment
 navigation
• Basic application creation
 using LabVIEW

LabVIEW Basics II*

Begin
Here

Student Guide

LabVIEW Introduction Course Manual viii ni.com

A. About This Manual
Use this manual to learn about LabVIEW programming concepts,
techniques, features, VIs, and functions you can use to create test
and measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications. This course
manual assumes that you are familiar with Windows and that you have
experience writing algorithms in the form of flowcharts or block diagrams.

The course manual is divided into lessons, each covering a topic or a set
of topics. Each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what
you will learn

• A description of the topics in the lesson

• A set of exercises to reinforce those topics

Some lessons include optional and challenge exercise sections or a set
of additional exercises to complete if time permits.

• A summary that outlines important concepts and skills taught in
the lesson

Several exercises in this manual use one of the following National
Instruments hardware products:

• A plug-in multifunction data acquisition (DAQ) device connected to
a DAQ Signal Accessory containing a temperature sensor, function
generator, and LEDs

• A GPIB interface connected to an NI Instrument Simulator

If you do not have this hardware, you still can complete the exercises.
Alternate instructions are provided for completing the exercises without
hardware. Exercises that explicitly require hardware are indicated with an
icon, shown at left. You also can substitute other hardware for those
previously mentioned. For example, you can use a GPIB instrument in place
of the NI Instrument Simulator, or another National Instruments DAQ
device connected to a signal source, such as a function generator.

B. What You Need to Get Started
Before you use this course manual, ensure you have all the following items:

❑ Windows 2000 or later installed on your computer. The course is
optimized for Windows XP.

❑ Multifunction DAQ device configured as device 1 using Measurement
& Automation Explorer (MAX)

Student Guide

© National Instruments Corporation ix LabVIEW Introduction Course Manual

❑ DAQ Signal Accessory, wires, and cable

❑ GPIB interface

❑ NI Instrument Simulator and power supply

❑ LabVIEW Full or Professional Development System 8.0 or later

❑ A serial cable

❑ A GPIB cable

❑ LabVIEW Basics I: Introduction course CD, containing the following
files

C. Installing the Course Software
Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Basics Course
Material Setup dialog box displays.

2. Click the Next button.

3. Choose the Typical setup type and click the Install button to begin the
installation.

4. Click the Finish button to exit the Setup Wizard.

The installer places the Exercises and Solutions folders at the top
level of the C: directory.

Repairing or Removing Course Material
You can repair or remove the course material using the Add or Remove
Programs feature on the Windows Control Panel. Repair the course
material to overwrite existing course material with the original, unedited
versions of the files. Remove the course material if you no longer need the
files on your machine.

Filename Description

Exercises Folder for saving VIs created during the course and
for completing certain course exercises; also
includes subVIs necessary for some exercises and
zip file (nidevsim.zip) containing the LabVIEW
instrument driver for the NI Instrument Simulator

Solutions Folder containing the solutions to all the course
exercises

Student Guide

LabVIEW Introduction Course Manual x ni.com

D. Course Goals
This course prepares you to do the following:

• Understand front panels, block diagrams, icons, and connector panes

• Use the programming structures and data types that exist in LabVIEW

• Use various editing and debugging techniques

• Create and save VIs so you can use them as subVIs

• Display and log data

• Create applications that use plug-in DAQ devices

• Create applications that use serial port and GPIB instruments

This course does not describe any of the following:

• Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

• Analog-to-digital (A/D) theory

• Operation of the serial port

• Operation of the GPIB bus

• Developing an instrument driver

• Developing a complete application for any student in the class; refer to
the NI Example Finder, available by selecting Help»Find Examples,
for example VIs you can use and incorporate into VIs you create

E. Course Conventions
The following conventions appear in this course manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to pull
down the File menu, select the Page Setup item, and select Options from
the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

This icon indicates that an exercise requires a plug-in GPIB interface or
DAQ device.

Student Guide

© National Instruments Corporation xi LabVIEW Introduction Course Manual

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames and extensions, and code excerpts.

monospace bold Text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation 1-1 LabVIEW Introduction Course Manual

1
Problem Solving

LabVIEW is a programming language you can use to solve various
problems. Problem solving skills are essential to creating solutions in
LabVIEW. Computer programmers use a software development method to
solve problems using software programs. Following a method helps a
programmer to develop code that has greater potential to successfully solve
a given problem as compared to writing code without a plan. A method also
helps to make code more readable, scalable, and modifiable.

The following lesson outlines a software development strategy you can use
to solve your measurement and analysis needs.

Topics

A. Software Development Method

B. Scenario

C. Design

D. Implementation

E. Testing

F. Maintenance

G. Project

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-2 ni.com

A. Software Development Method
Following a set of steps that has been refined over the years by software
engineers can simplify solving problems using software. In this course, you
will learn a specific set of steps called the software development method.
The software development method is a strategy for using LabVIEW to
implement a software solution. Use the software development method to
create a solution to your problem.

In the software development method, complete the following steps:

1. Define the problem (scenario).

2. Design an algorithm and/or flowchart.

3. Implement the design.

4. Test and verify the implementation.

5. Maintain and update the implementation.

During this course, this software development method serves as a
framework for all hands-on development exercises. In most exercises, you
receive the scenario and design steps. Then you complete the
implementation, testing, and maintenance steps. Most of the instruction in
this course helps you create a successful implementation.

Furnace Example—A furnace example in this lesson illustrates each step
of the software development method described.

B. Scenario
During this stage of the software development method, you define what
your problem is so that you can approach it with all the necessary factors
identified. You can remove extraneous factors during this phase and focus
on the core problem that you must solve. How you identify the problem
initially can save you time while you design and implement a solution.

Furnace Example—Assume that you must cure a material at a certain
temperature for a set amount of time in a furnace. For this problem, it is not
necessary to know the material type or the time of day. You must know the
cure time, cure temperature, and method for adjusting the furnace
temperature.

C. Design
After you determine the scope of the problem, you can design a solution by
analyzing the problem. Part of analyzing the solution is identifying the
inputs and outputs of the software, as well as any additional requirements.

Lesson 1 Problem Solving

© National Instruments Corporation 1-3 LabVIEW Introduction Course Manual

After you define the inputs and outputs, you can design an algorithm,
flowchart and/or state transition diagram to help you arrive at a software
solution.

Identify the Inputs
The inputs indicate the raw data that you want to process during the problem
solving process.

Furnace Example—Inputs for the furnace software are the cure time
(seconds), the necessary cure temperature (degrees Kelvin), and the furnace
temperature (degrees Kelvin).

Identify the Outputs
The outputs represent the result of the calculation, processing, or other
condition that the problem solving process implements.

Furnace Example—The output of the furnace software is an on/off switch
that applies voltage to the furnace coil. Voltage is applied to the coil by
changing the state of a switch that controls the voltage supply to the coils.
When the voltage is applied or removed, the furnace has an immediate
change in temperature.

Identifying Additional Requirements
Consider any other factors that might influence solving the problem. For
example, do you need to use specific units such as centimeters or seconds?

Furnace Example—As an additional requirement for this example, assume
that the furnace can not start until the interior temperature is the same as the
exterior temperature.

Designing an Algorithm to Solve the Problem
After determining the inputs, outputs, and additional requirements, you can
create an algorithm. An algorithm is a set of steps that process your inputs
and create outputs.

Furnace Example—This algorithm describes the operation of the furnace:

1. Read exterior temperature.

2. Read interior temperature.

3. If interior temperature is not equal to exterior temperature, repeat step 1.

4. Read interior temperature.

5. If interior temperature is greater than desired temperature, turn off
voltage to coil.

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-4 ni.com

6. If current temperature is less than or equal to desired temperature, turn
on voltage to coil.

7. If time is less than cure time, repeat step 4.

8. Turn off voltage to coil.

Designing a Flowchart
A flowchart displays the steps for solving the problem. Flowcharts are
useful because you can follow more complex processes of an algorithm in a
visual way. For example, you can see if a specific step has two different
paths to the end solution and you can plan your code accordingly.

Furnace Example—You can design this example using either an algorithm
or a flowchart. Figure 1-1 shows a flowchart following the algorithm
designed in the previous subsection.

Lesson 1 Problem Solving

© National Instruments Corporation 1-5 LabVIEW Introduction Course Manual

Figure 1-1. Flowchart for Furnace Example

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-6 ni.com

Designing a State Transition Diagram
State transition diagrams are a specific type of flowchart that are commonly
used when creating LabVIEW state machines. State transition diagrams
allow you to clearly indicate the states of a program and what causes the
program to transition from one state to the net. A state transition diagram
uses a labeled circle to signify a steady state and a labeled arrow to indicate
a transition from a state.

A state is a part of a program that satisfies a condition, performs an action,
or waits for an event. A transition is the condition, action or event that
causes the program to move to the next state.

The start of the program is signified with a solid circle, as shown at left.

The end of the program is signified with a targeted circle, as shown at left.

Furnace Example—You can also use a state transition diagram for this
example. Figure 1-2 shows the furnace example redesigned as a state
transition diagram. Both the flowchart and the state transition diagram are
valid ways to design a VI, but may lead to a different programming solution.

Lesson 1 Problem Solving

© National Instruments Corporation 1-7 LabVIEW Introduction Course Manual

Figure 1-2. State Transition Diagram for Furnace Example

D. Implementation
In the implementation stage, you create code for your algorithm or
flowchart. When writing code in a text-based language, the algorithm
elegantly translates into each line of code, depending on the level of detail
shown in the algorithm. Because LabVIEW is a graphical programming
language, the flowchart works much the same way. Refer to Lesson 11,
Common Design Techniques and Patterns for more information about
implementing LabVIEW VIs from a flowchart or state transition diagram.

Compare
Temperatures

Legend
T = Current Temperature
X = Desired Temperature
Y = Exterior Temperature
A = Current Time
B = Cure Time

Acquire
Oven

Temperature

T = Y

Turn on VoltageT < X

Turn off Voltage

T >= X
Check Time

A >= B

A < B

T = Y

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-8 ni.com

E. Testing
Testing and verifying is an important part of the software development
method. Make sure to test your implementation with data that is both logical
and illogical for the solution you created. Testing logical data verifies that
the inputs produce the expected result. By testing illogical data, you can test
to see if the code has effective error handling.

Furnace Example—To test the error handling strategy of the furnace
example, you could input a cure temperature that is less than the ambient
temperature. An effective error handling strategy could alert the user that
the furnace can only increase temperature, not decrease it.

F. Maintenance
Maintenance is the ongoing process of resolving programming errors
adding parallel construction changes to the original solution for a problem.

Furnace Example—After writing this code, you may discover that the
customer wants to add a temperature sensor to another area of the oven to
add redundancy to the system. Adding features to the program is easier if
you plan for scalability in your software from the beginning.

Lesson 1 Problem Solving

© National Instruments Corporation 1-9 LabVIEW Introduction Course Manual

Exercise 1-1 Software Development Method

Goal
Solve a problem using the software development method without using
software.

Scenario
You are responsible for displaying the time until arrival for airplanes at an
airport. You receive this information in seconds, but must display it as a
combination of hours/minutes/seconds.

Design
What inputs are you given?

What outputs are you expected to produce?

What is the relationship/conversion between the inputs and outputs? Use the
Windows calculator to help you determine the relationship.

Create an algorithm or flowchart that demonstrates the relationship between
the inputs and outputs.

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-10 ni.com

Implementation
During this stage, you implement the program from the algorithm or
flowchart. For this exercise, skip this stage. Refer to Exercise 2-1 to see an
implementation of a solution to this problem.

Testing
Use a set of known values to test the algorithm or flowchart you designed.

Example inputs with corresponding outputs:

Input Output

0 seconds 0 hours, 0 minutes, 0 seconds

60 seconds 0 hours, 1 minute, 0 seconds

3600 seconds 1 hour, 0 minutes, 0 seconds

3665 seconds 1 hour, 1 minute, 5 seconds

Maintenance
If a test value set has failed, return to the design phase and check for errors.

End of Exercise 1-1

Lesson 1 Problem Solving

© National Instruments Corporation 1-11 LabVIEW Introduction Course Manual

Exercise 1-2 Project: State Transition Diagram

Goal
Create a state transition diagram.

Scenario
Design a state transition diagram for a program that does the following:

1. Acquires a temperature every half a second

2. Analyzes each temperature to determine if the temperature is too high or
too low

3. Alerts the user if there is a danger of heat stroke or freeze

4. Displays the data to the user

5. Logs the data if a warning occurs

6. If the user does not stop the program, the entire process repeats

Design
In the design stage, you determine the inputs and outputs. Design a state
transition diagram utilizing the inputs to achieve the required outputs.

Inputs
• Current Temperature (T)

• High Temperature Limit (X)

• Low Temperature Limit (Y)

• Stop

Outputs
• Warning Levels: Heatstroke Warning, No Warning, Freeze Warning

• Current Temperature Display

• Data Log File

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-12 ni.com

State Transition Diagram
Design a state transition diagram that produces the outputs based on the
given inputs. Remember to take into account transitions such as whether the
time has elapsed before taking the next temperature reading, and whether to
log data based on the warning that has occurred.

Lesson 1 Problem Solving

© National Instruments Corporation 1-13 LabVIEW Introduction Course Manual

Note You do not complete the Implementation, Testing and Maintenance stages in this
exercise because the goal of the exercise is to complete only the design.

End of Exercise 1-2

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-14 ni.com

G. Project
Throughout this course, the course project illustrates concepts. In
Exercise 1-2, you designed the state transition diagram for the course
project. The diagram you designed is just one potential design among many.

For this course, one state transition diagram, shown in Figure 1-3, is chosen
so that all students may follow the same instruction set. This state transition
diagram is chosen because it successfully solves the problem and it has parts
that can be effectively used to demonstrate course concepts. However, it
may not be the best solution to the problem.

Figure 1-3. Project State Transition Diagram

Initialize

Analysis

Acquisition

Datalog

Warning=TRUE

Warning=FALSE

Time Elapsed=TRUE
and

Stop=False

Stop=TRUE

Time Elapsed=FALSE
and

Stop=FALSE

Time Check

Lesson 1 Problem Solving

© National Instruments Corporation 1-15 LabVIEW Introduction Course Manual

Figure 1-4 shows an example of an alternate state transition diagram. This
state transition diagram also solves the problem very effectively. One of the
major differences between these two diagrams is how they can be expanded
for future functionality. In the state transition diagram in Figure 1-3, you can
modify the diagram to include warning states for other physical phenomena,
such as wind, pressure, and humidity. In the state transition diagram in
Figure 1-4, you can add other layers of temperature warnings. The possible
future changes you expect to your program affect which diagram you
choose.

Figure 1-4. Project State Transition Diagram Alternate

Initialize

Heatstroke
Warning

Acquisition

Freeze Warning

T>X?

Stop=False

Stop=TRUE

Time Elapsed=TRUE

Stop

No Warning

T<Y?

Y<T<X?
Time Check

Time Elapsed=FALSE

Lesson 1 Problem Solving

© National Instruments Corporation 1-17 LabVIEW Introduction Course Manual

Self-Review: Quiz
Match each step of the described software development method to the
correct description of the step.

1. Scenario A. Apply an algorithm or flowchart

2. Design B. Verify the VI

3. Implementation C. Define the problem

4. Testing D. Update the VI

5. Maintenance E. Identify the inputs and outputs

Lesson 1 Problem Solving

© National Instruments Corporation 1-19 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers
Match each step of the described software development method to the
correct description of the step.

1 C. Scenario: Define the problem

2 E. Design: Identify the inputs and outputs

3 A. Implementation: Apply an algorithm or
flowchart

4 B. Testing: Verify the VI

5 D. Maintenance: Update the VI

Lesson 1 Problem Solving

LabVIEW Introduction Course Manual 1-20 ni.com

Notes

© National Instruments Corporation 2-1 LabVIEW Introduction Course Manual

2
Navigating LabVIEW

This lesson introduces how to navigate the LabVIEW environment. This
includes using the menus, toolbars, palettes, tools, help, and common dialog
boxes of LabVIEW. You also learn how to run a VI and gain a general
understanding of a front panel and block diagram. At the end of this lesson,
you build a simple VI that acquires, analyzes, and presents data.

Topics

A. Virtual Instruments (VIs)

B. Starting a VI

C. Parts of a VI

D. Project Explorer

E. Front Panel

F. Block Diagram

G. Searching for Controls, VIs, and Functions

H. Selecting a Tool

I. Dataflow

J. Building a Simple VI

K. LabVIEW Help Utilities

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-2 ni.com

A. Virtual Instruments (VIs)

LabVIEW programs are called virtual instruments, or VIs, because their
appearance and operation imitate physical instruments, such as
oscilloscopes and multimeters. LabVIEW contains a comprehensive set of
VIs and functions for acquiring, analyzing, displaying, and storing data, as
well as tools to help you troubleshoot your code.

B. Parts of a VI
LabVIEW VIs contain three main components—the front panel, the block
diagram, and the icon/connector pane.

Front Panel
The front panel is the user interface for the VI. Figure 2-1 shows an example
of a front panel. You build the front panel with controls and indicators,
which are the interactive input and output terminals of the VI, respectively.

Figure 2-1. VI Front Panel

Block Diagram
After you build the front panel, you add code using graphical
representations of functions to control the front panel objects. Figure 2-2
shows an example of a block diagram. The block diagram contains this
graphical source code. Front panel objects appear as terminals on the block
diagram.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-3 LabVIEW Introduction Course Manual

Figure 2-2. Block Diagram

Icon/Connector Pane
You can use a VI as a subVI. A subVI is a VI that is used inside of another
VI, similar to a function in a text-based programming language. To use a VI
as a subVI, it must have an icon and a connector pane.

Every VI displays an icon, shown at left, in the upper right corner of the
front panel and block diagram windows. An icon is a graphical
representation of a VI. The icon can contain both text and images. If you use
a VI as a subVI, the icon identifies the subVI on the block diagram of the
VI. The default icon contains a number that indicates how many new VIs
you opened after launching LabVIEW.

To use a VI as a subVI, you need to build a connector pane, shown at left.
The connector pane is a set of terminals that corresponds to the controls and
indicators of that VI, similar to the parameter list of a function call in text-
based programming languages. Access the connector pane by right-clicking
the icon in the upper right corner of the front panel window. You cannot
access the connector pane from the icon in the block diagram window.

Default Icon

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-4 ni.com

C. Starting a VI
When you launch LabVIEW, the Getting Started window appears. Use this
window to create new VIs and projects, select among the most recently
opened LabVIEW files, find examples, and search the LabVIEW Help. You
also can access information and resources to help you learn about
LabVIEW, such as specific manuals, help topics, and resources at ni.com/
manuals.

The Getting Started window disappears when you open an existing file or
create a new file. You can display the window by selecting View»Getting
Started Window.

Figure 2-3. The LabVIEW Getting Started Window

You can configure LabVIEW to open a new, blank VI on launch instead of
displaying the window. Select Tools»Options, select Environment from
the Category list, and place a checkmark in the Skip Getting Started
window on launch checkbox.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-5 LabVIEW Introduction Course Manual

Creating or Opening a VI or Project
You can begin in LabVIEW by starting from a blank VI or project, opening
an existing VI or project and modifying it, or opening a template from which
to begin your new VI or project.

Starting from Scratch
To open a new project from the Getting Started window, select the Empty
Project option. A new, unnamed project opens, and you can add files to and
save the project.

To open a new, blank VI that is not associated with a project, select the
Blank VI option on the Getting Started window.

Create a VI or Project from a Template
Select File»New to display the New dialog box, which lists the built-in VI
templates. You also can display the New dialog box by clicking the New
link in the Getting Started window.

Figure 2-4. New Dialog Box

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-6 ni.com

Opening an Existing VI
Select the Browse option in the Getting Started window to navigate to and
open an existing VI.

Tip The VIs you edit in this course are located in the
C:\Exercises\LabVIEW Basics I directory.

As the VI loads, a status dialog box similar to the following example might
appear.

Figure 2-5. Dialog Box Indicating the Status of Loading VIs

The Loading section lists the subVIs of the VI as they load into memory
and shows the number of subVIs loaded into memory so far. You can cancel
the load at any time by clicking the Stop button.

If LabVIEW cannot immediately locate a subVI, it begins searching through
all directories specified by the VI Search Path. You can edit the VI Search
Path by selecting Tools»Options and selecting Paths from the category list.

You can have LabVIEW ignore a subVI by clicking the Ignore SubVI
button, or you can click the Browse button to search for the missing subVI.

Saving a VI
To save a new VI, select File»Save. If you already saved your VI, select
File»Save As to access the Save As dialog box. From the Save As dialog
box, you can create a copy of the VI, or delete the original VI and replace it
with the new one.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-7 LabVIEW Introduction Course Manual

Figure 2-6. Save "<VI Name>" As Dialog Box

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-8 ni.com

D. Project Explorer
Use projects to group together LabVIEW files and non-LabVIEW files,
create build specifications, and deploy or download files to targets. When
you save a project, LabVIEW creates a project file (.lvproj), which
includes references to files in the project, configuration information, build
information, deployment information, and so on.

You must use a project to build applications and shared libraries. You also
must use a project to work with an RT, FPGA, or PDA target. Refer to the
specific module documentation for more information about using projects
with the LabVIEW Real-Time, FPGA, and PDA modules.

Project Explorer Window
Use the Project Explorer window to create and edit LabVIEW projects.
Select File»New Project to display the Project Explorer window. You
also can select Project»New Project or select Empty Project in the New
dialog box to display the Project Explorer window.

The Project Explorer window includes the following items by default:

• Project root—Contains all other items in the Project Explorer
window. This label on the project root includes the filename for the
project.

– My Computer—Represents the local computer as a target in the
project.

– Dependencies—Includes items that VIs under a target require.

– Build Specifications—Includes build configurations for source
distributions and other types of builds available in LabVIEW
toolkits and modules. If you have the LabVIEW Professional
Development System or Application Builder installed, you can use
Build Specifications to configure stand-alone applications (EXEs),
shared libraries (DLLs) , installers, and zip files.

Tip A target is any device that can run a VI.

When you add another target to the project, LabVIEW creates an additional
item in the Project Explorer window to represent the target. Each target
also includes Dependencies and Build Specifications. You can add files
under each target.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-9 LabVIEW Introduction Course Manual

Figure 2-7. Project Explorer Window

Project-Related Toolbars
Use the Standard, Project, Build Specifications, and Source Control
toolbar buttons to perform operations in a LabVIEW project. The toolbars
are available at the top of the Project Explorer window, as shown in
Figure 2-7. You might need to expand the Project Explorer window to
view all of the toolbars.

Tip The Source Control toolbar is only available if you have Source Control
configured in LabVIEW.

You can show or hide toolbars by selecting View»Toolbars and selecting
the toolbars you want to show or hide. You also can right-click an open area
on the toolbar and select the toolbars you want to show or hide.

Creating a LabVIEW Project
Complete the following steps to create a project.

1. Select File»New Project to display the Project Explorer window. You
also can select Project»New Project or select Empty Project in the
New dialog box to display the Project Explorer window.

2. Add items you want to include in the project under a target.

3. Select File»Save Project to save the project.

1 Standard Toolbar
2 Project Toolbar
3 Build Specifications Toolbar

4 Source
5 Target

6 Dependencies
7 Build Specifications

1 2 3

7 46 5

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-10 ni.com

Adding Existing Files To A Project
You can add existing files to a project. Use the Source item in the Project
Explorer window to add files such as VIs or text files, to a LabVIEW
project. An item only can appear once in Source. For example, if you add a
file from a folder on disk to Source and then add the entire folder on disk to
Source, LabVIEW does not include the file again. Similarly, if an item
already appears in Dependencies, you cannot add the item to Source also.

You can add items to the Source of a project in the following ways:

1. Right-click Source and select Add»File from the shortcut menu to add
a file. You also can select Source and then select Project»Add To
Project»Add File to add a file.

2. Right-click Source and select Add»Folder from the shortcut menu to
add a folder. You also can select Source and then select Project»Add
To Project»Add Folder to add a folder. Selecting a folder on disk adds
contents of the entire folder, including files and contents of subfolders.

Note After you add a folder on disk to a project, LabVIEW does not automatically
update the folder in the project if you make changes to the folder on disk.

3. Right-click Source and select New»VI from the shortcut menu to add a
new, blank VI. You also can select File»New VI or Project»Add To
Project»New VI to add a new, blank VI

4. Select the VI icon in the upper right corner of a front panel or block
diagram window and drag the icon to Source.

5. Windows Select an item or folder from the file system on your computer
and drag it to Source.

You also can add new LabVIEW files to a project from the New dialog box.
Select File»New or Project»Add To Project»New to display the New
dialog box. In the New dialog box, select the item you want to add and place
a checkmark in the Add to project checkbox.

Removing Items from a Project
You can remove items from the Project Explorer window in the following
ways:

• Right-click the item you want to remove and select Remove from the
shortcut menu.

• Select the item you want to remove and press <Delete>.

• Select the item you want to remove and click the Delete button on the
Standard toolbar.

Note Removing an item from a project does not delete the item on disk.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-11 LabVIEW Introduction Course Manual

Organizing Items in a Project
Use folders to organize items in the Source and System Definition in the
Project Explorer window. Right-click the Source or System Definition and
select New»Folder from the shortcut menu to add a new folder. You also
can create a new subfolder by right-clicking an existing folder and selecting
New»Folder from the shortcut menu.

You can arrange items in a folder. Right-click a folder and select Arrange
By»Name from the shortcut menu to arrange items in alphabetical order.
Right-click a folder and select Arrange By»Type from the shortcut menu
to arrange items by file type.

Viewing Files in a Project
When you add a file to a LabVIEW project, LabVIEW includes a reference
to the file on disk. Right-click a file in the Project Explorer window and
select Open from the shortcut menu to open the file in its default editor.

Right-click the project and select View»Full Paths from the shortcut menu
to view where files that a project references are saved on disk.

Use the Project File Information dialog box to view where files that a
project references are located on disk and in the Project Explorer window.
Select Project»File Information to display the Project File Information
dialog box. You also can right-click the project and select View»File
Information from the shortcut menu to display the Project File
Information dialog box.

Saving a Project
You can save a LabVIEW project in the following ways:

• Select File»Save Project.

• Select Project»Save Project.

• Right-click the project and select Save from the shortcut menu.

• Click the Save Project button on the Project toolbar.

You must save new, unsaved files in a project before you can save the
project. When you save a project, LabVIEW does not save dependencies as
part of the project file.

Note Make a backup copy of a project when you prepare to make major revisions to the
project.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-12 ni.com

E. Front Panel
When you open a new or existing VI, the front panel of the VI appears. The
front panel is the user interface for the VI. Figure 2-8 shows an example of
a front panel.

Figure 2-8. Example of a Front Panel

Controls and Indicators
You build the front panel with controls and indicators, which are the
interactive input and output terminals of the VI, respectively. Controls are
knobs, push buttons, dials, and other input devices. Indicators are graphs,
LEDs and other displays. Controls simulate instrument input devices and
supply data to the block diagram of the VI. Indicators simulate instrument
output devices and display data the block diagram acquires or generates.

Figure 2-8 has the following controls: two controls: Number of
Measurements and Delay(sec). It has one indicator: an XY graph named
Temperature Graph.

The user can change the input value for the Number of Measurements and
Delay(sec). The user can see the value generated by the VI on the
Temperature Graph. The VI generates the values for the indicators based
on the code created on the block diagram. You learn about the block
diagram in the next section.

1 Front Panel 2 Front Panel Toolbar 3 Controls Palette

3
1

2

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-13 LabVIEW Introduction Course Manual

Every control or indicator has a data type associated with it. For example,
the Delay (sec) horizontal slide is a numeric data type. The most commonly
used data types are numeric, Boolean value and string. You learn about
other data types in Lesson 3.

Numeric Controls and Indicators
The numeric data type can represent numbers of various types, such as
integer or real. The two common numeric objects are the numeric control
and the numeric indicator, as shown in Figure 2-9. Objects such as the meter
and the dial also represent numeric data.

Figure 2-9. Numeric Controls and Indicators

To enter or change values in a numeric control, click the increment and
decrement buttons with the Operating tool or double-click the number with
either the Labeling tool or the Operating tool, enter a new number, and press
the <Enter> key.

Boolean Controls and Indicators
The Boolean data type represents data that only has two parts, such as TRUE
and FALSE or ON and OFF. Use Boolean controls and indicators to enter
and display Boolean (True or False) values. Boolean objects simulate
switches, push buttons, and LEDs. The vertical toggle switch and the round
LED Boolean objects are shown in Figure 2-10.

Figure 2-10. Boolean Controls and Indicators

String Controls and Indicators
The string data type is a sequence of ASCII characters. Use string controls
to receive text from the user such as a password or user name. Use string

1 Increment/Decrement
Buttons

2 Numeric Control Numeric Indicator

21

3

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-14 ni.com

indicators to display text to the user. The most common string objects are
tables and text entry boxes as shown in Figure 2-11.

Figure 2-11. String Controls and Indicators

Controls Palette
The Controls palette contains the controls and indicators you use to create
the front panel. You access the Controls palette from the front panel by
selecting View»Controls Palette. The Controls palette is broken into
various categories; you can expose some or all of these categories to suit
your needs. Figure 2-12 shows a Controls palette with all of the categories
exposed and the Modern category expanded. During this course, you work
exclusively in the Modern category.

Figure 2-12. Controls Palette

To view or hide categories (subpalettes), select the View button on the
palette, and select or deselect in the Always Visible Categories option. You
learn more about using the Controls palette in Exercise 2-2.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-15 LabVIEW Introduction Course Manual

Shortcut Menus
All LabVIEW objects have associated shortcut menus. As you create a VI,
use the shortcut menu items to change the appearance or behavior of front
panel and block diagram objects. To access the shortcut menu, right-click
the object.

Figure 2-13 shows a shortcut menu for a meter.

Figure 2-13. Shortcut Menu for a Meter

Property Dialog Boxes
Front panel objects also have property dialog boxes that you can use to
change the look or behavior of front panel objects. Right-click a front panel
object and select Properties from the shortcut menu to access the property
dialog box for an object. The following figure shows the property dialog box
for the meter shown in the previous figure. The options available on the
property dialog box for an object are similar to the options available on the
shortcut menu for that object.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-16 ni.com

Figure 2-14. Property Dialog Box for a Meter

Front Panel Toolbar
Each window has a toolbar associated with it. Use the front panel toolbar
buttons to run and edit the VI.

The following toolbar appears on the front panel.

Click the Run button to run a VI. LabVIEW compiles the VI, if necessary.
You can run a VI if the Run button appears as a solid white arrow, shown at
left. The solid white arrow also indicates you can use the VI as a subVI if
you create a connector pane for the VI.

While the VI runs, the Run button appears as shown at left if the VI is a top-
level VI, meaning it has no callers and therefore is not a subVI.

If the VI that is running is a subVI, the Run button appears as shown at left.

The Run button appears broken, shown at left, when the VI you are creating
or editing contains errors. If the Run button still appears broken after you
finish wiring the block diagram, the VI is broken and cannot run. Click this
button to display the Error list window, which lists all errors and warnings.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-17 LabVIEW Introduction Course Manual

Click the Run Continuously button, shown at left, to run the VI until you
abort or pause execution. You also can click the button again to disable
continuous running.

While the VI runs, the Abort Execution button, shown at left, appears.
Click this button to stop the VI immediately if there is no other way to stop
the VI. If more than one running top-level VI uses the VI, the button is
dimmed.

Caution The Abort Execution button stops the VI immediately, before the VI finishes
the current iteration. Aborting a VI that uses external resources, such as external
hardware, might leave the resources in an unknown state by not resetting or releasing
them properly. Design VIs with a stop button to avoid this problem.

Click the Pause button, shown at left, to pause a running VI. When you
click the Pause button, LabVIEW highlights on the block diagram the
location where you paused execution, and the Pause button appears red.
Click the Pause button again to continue running the VI.

Select the Text Settings pull-down menu, shown at left, to change the font
settings for the selected portions of the VI, including size, style, and color.

Select the Align Objects pull-down menu, shown at left, to align objects
along axes, including vertical, top edge, left, and so on.

Select the Distribute Objects pull-down menu, shown at left, to space
objects evenly, including gaps, compression, and so on.

Select the Resize Objects pull-down menu, shown at left, to resize multiple
front panel objects to the same size.

Select the Reorder pull-down menu, shown at left, when you have objects
that overlap each other and you want to define which one is in front or back
of another. Select one of the objects with the Positioning tool and then select
from Move Forward, Move Backward, Move To Front, and Move To
Back.

Select the Show Context Help Window button, shown at left, to toggle the
display of the Context Help window.

Type appears to remind you that a new value is available to replace an old
value. The Enter button disappears when you click it, press the <Enter> key
or click the front panel or block diagram workspace.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-18 ni.com

F. Block Diagram
Block diagram objects include terminals, subVIs, functions, constants,
structures, and wires, which transfer data among other block diagram
objects.

Figure 2-15. Example of a Block Diagram and Corresponding Front Panel

Terminals
Front panel objects appear as terminals on the block diagram.Terminals are
entry and exit ports that exchange information between the front panel and
block diagram. Terminals are analogous to parameters and constants in text-
based programming languages. Types of terminals include control or
indicator terminals and node terminals. Control and indicator terminals
belong to front panel controls and indicators. Data you enter into the front
panel controls (a and b in the previous figure) enter the block diagram
through the control terminals. The data then enter the Add and Subtract
functions. When the Add and Subtract functions complete their
calculations, they produce new data values. The data values flow to the
indicator terminals, where they update the front panel indicators (a+b and a-
b in the previous figure).

The terminals in Figure 2-15 belong to four front panel controls and
indicators. The connector panes of the Add and Subtract functions, shown
at left, have three node terminals. To display the terminals of the function

1 Indicator Terminals 2 Wires 3 Nodes 4 Control Terminals

1234

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-19 LabVIEW Introduction Course Manual

on the block diagram, right-click the function node and select Visible
Items»Terminals from the shortcut menu.

The terminals represent the data type of the control or indicator. You can
configure front panel controls or indicators to appear as icon or data type
terminals on the block diagram. By default, front panel objects appear as
icon terminals. For example, a knob icon terminal, shown as follows,
represents a knob on the front panel.

The DBL at the bottom of the terminal represents a data type of double-
precision, floating-point numeric. A DBL terminal, shown as follows,
represents a double-precision, floating-point numeric control.

To display a terminal as a data type on the block diagram, right-click the
terminal and select View As Icon from the shortcut menu to remove the
checkmark.

Block Diagram Nodes
Nodes are objects on the block diagram that have inputs and/or outputs and
perform operations when a VI runs. They are analogous to statements,
operators, functions, and subroutines in text-based programming
languages.Nodes can be functions, subVIs, or structures. Structures are
process control elements, such as Case structures, For Loops, or
While Loops. The Add and Subtract functions in the previous figure are
function nodes.

Functions
Functions are the fundamental operating elements of LabVIEW. Functions
do not have front panels or block diagrams but do have connector panes.
Double-clicking a function only selects the function. A function has a pale
yellow background on its icon.

SubVIs
SubVIs are VIs that you build to use inside of another VI or that you access
on the Functions palette.

Any VI has the potential to be used as a subVI. When you double-click a
subVI on the block diagram, its front panel and block diagram appear. The
front panel includes controls and indicators. The block diagram includes

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-20 ni.com

wires, front panel icons, functions, possibly subVIs, and other LabVIEW
objects. The upper right corner of the front panel and block diagram displays
the icon for the VI. This is the icon that appears when you place the VI on a
block diagram as a subVI.

SubVIs also can be Express VIs. Express VIs are nodes that require minimal
wiring because you configure them with dialog boxes. Use Express VIs for
common measurement tasks. You can save the configuration of an Express
VI as a subVI. Refer to the Express VIs topic of the LabVIEW Help for more
information about creating a subVI from an Express VI configuration.

LabVIEW uses colored icons to distinguish between Express VIs, and other
VIs on the block diagram. Icons for Express VIs appear on the block
diagram as icons surrounded by a blue field whereas subVI icons have a
yellow field.

Expandable Nodes versus Icons
You can display VIs and Express VIs as icons or as expandable nodes.
Expandable nodes appear as icons surrounded by a colored field. SubVIs
appear with a yellow field, and Express VIs appear with a blue field. Use
icons if you want to conserve space on the block diagram. Use expandable
nodes to make wiring easier and to aid in documenting block diagrams. By
default, subVIs appear as icons on the block diagram, and Express VIs
appear as expandable nodes. To display a subVI or Express VI as an
expandable node, right-click the subVI or Express VI and remove the
checkmark next to the View As Icon shortcut menu item.

You can resize the expandable node to make wiring even easier, but it also
takes a large amount of space on the block diagram. Complete the following
steps to resize a node on the block diagram.

1. Move the Positioning tool over the node. Resizing handles appear at the
top and bottom of the node.

2. Move the cursor over a resizing handle to change the cursor to the
resizing cursor.

3. Use the resizing cursor to drag the border of the node down to display
additional terminals.

4. Release the mouse button.

To cancel a resizing operation, drag the node border past the block diagram
window before you release the mouse button.

The following figure shows the Basic Function Generator VI as a resized
expandable node.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-21 LabVIEW Introduction Course Manual

Figure 2-16. Basic Function Generator VI in Different Display Modes

Note If you display a subVI or Express VI as an expandable node, you cannot display
the terminals for that node and you cannot enable database access for that node.

Wires
You transfer data among block diagram objects through wires. In Figure,
wires connect the control and indicator terminals to the Add and Subtract
function. Each wire has a single data source, but you can wire it to many VIs
and functions that read the data. Wires are different colors, styles, and
thicknesses, depending on their data types.

A broken wire appears as a dashed black line with a red X in the middle, as
shown at left. Broken wires occur for a variety of reasons, such as when you
try to wire two objects with incompatible data types.

The following examples are the most common wire types.

In LabVIEW, you use wires to connect multiple terminals together to pass
data in a VI. You must connect the wires to inputs and outputs that are
compatible with the data that is transferred with the wire. For example, you
cannot wire an array output to a numeric input. In addition the direction of

Wire Type Scalar 1D Array 2D Array Color

Numeric Orange (floating-point),
Blue (integer)

Boolean Green

String Pink

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-22 ni.com

the wires must be correct. You must connect the wires to only one input and
at least one output. For example, you cannot wire two indicators together.
The components that determine wiring compatibility include the data type
of the control and/or the indicator and the data type of the terminal.

Data Types
Data types indicate what objects, inputs, and outputs you can wire together.
For example, if a switch has a green border, you can wire a switch to any
input with a green label on an Express VI. If a knob has an orange border,
you can wire a knob to any input with an orange label. However, you cannot
wire an orange knob to an input with a green label. Notice the wires are the
same color as the terminal.

Automatically Wiring Objects
As you move a selected object close to other objects on the block diagram,
LabVIEW draws temporary wires to show you valid connections. When you
release the mouse button to place the object on the block diagram,
LabVIEW automatically connects the wires. You also can automatically
wire objects already on the block diagram. LabVIEW connects the terminals
that best match and does not connect the terminals that do not match.

Toggle automatic wiring by pressing the space bar while you move an
object using the Positioning tool.

By default, automatic wiring is enabled when you select an object from the
Functions palette or when you copy an object already on the block diagram
by pressing the <Ctrl> key and dragging the object. Automatic wiring is
disabled by default when you use the Positioning tool to move an object
already on the block diagram.

You can adjust the automatic wiring settings by selecting Tools»Options
and selecting Block Diagram from the top pull-down menu.

Manually Wiring Objects
When you pass the Wiring tool over a terminal, a tip strip appears with the
name of the terminal. In addition, the terminal blinks in the Context Help
window and on the icon to help you verify that you are wiring to the correct
terminal. To wire objects together, pass the Wiring tool over the first
terminal, click, pass the cursor over the second terminal, and click again.
After wiring, you can right-click the wire and select Clean Up Wire from
the shortcut menu to have LabVIEW automatically choose the a path for the
wire. If you have broken wires to remove, press <Ctrl>-B to delete all the
broken wires on the block diagram.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-23 LabVIEW Introduction Course Manual

Functions Palette
The Functions palette contains the VIs, functions and constants you use to
create the block diagram. You access the Functions palette from the block
diagram by selecting View»Functions Palette. The Functions palette is
broken into various categories; you can show and hide categories to suit
your needs. Figure 2-17 shows a Functions palette with all of the categories
exposed and the Programming category expanded. During this course, you
work mostly in the Programming category, but you also use other
categories, or subpalettes.

Figure 2-17. Functions Palette

To view or hide categories, select the View button on the palette, and select
or deselect in the Always Visible Categories option. You learn more about
using the Functions palette in Exercise 2-2.

Block Diagram Toolbar
When you run a VI, buttons appear on the block diagram toolbar that you
can use to debug the VI. The following toolbar appears on the block
diagram.

Click the Highlight Execution button, shown at left, to display an
animation of the block diagram execution when you click the Run button.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-24 ni.com

Notice the flow of data through the block diagram. Click the button again to
disable execution highlighting.

Click the Retain Wire Values button, shown at left, to save the wire values
at each point in the flow of execution so that when you place a probe on the
wire, you can immediately retain the most recent value of the data that
passed through the wire. You must successfully run the VI at least once
before you are able to retain the wire values.

Click the Step Into button, shown at left, to open a node and pause. When
you click the Step Into button again, it executes the first action and pauses
at the next action of the subVI or structure. You also can press <Ctrl> and
down arrow keys. Single-stepping through a VI steps through the VI node
by node. Each node blinks to denote when it is ready to execute. By stepping
into the node, you are ready to single-step inside the node.

Click the Step Over button, shown at left, to execute a node and pause at
the next node. You also can press <Ctrl> and right arrow keys. By stepping
over the node, you execute the node without single-stepping through the
node.

Click the Step Out button, shown at left, to finish executing the current
node and pause. When the VI finishes executing, the Step Out button
becomes dimmed. You also can press <Ctrl> and up arrow keys.
By stepping out of a node, you complete single-stepping through the node
and navigate to the next node.

The Warning button, shown at left, appears if a VI includes a warning and
you placed a checkmark in the Show Warnings checkbox in the Error List
window. A warning indicates there is a potential problem with the block
diagram, but it does not stop the VI from running.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-25 LabVIEW Introduction Course Manual

Exercise 2-1 Concept: Exploring a VI

Goal
Identify the parts of an existing VI.

Description
You received a VI from an employee that can convert seconds into a
combination of hours/minutes/seconds. You must evaluate this VI to see if
it works as expected and can display the remaining time until the plane
arrives.

1. Open the Exploring_a_VI.exe simulation from the
C:\Exercises\LabVIEW Basics I\Exploring a VI directory.

2. Follow the instructions given in the simulation.

3. Open Seconds Breakdown.vi in the C:\Exercises\LabVIEW
Basics I Exporing a VI directory. This is the LabVIEW VI shown
in the simulation.

4. Test the VI using the values given in Table 2-1.

❑ Enter the input value in the Total Time in Seconds control.

❑ Click the Run button.

❑ For each input, compare the given outputs to the outputs listed in
Table 2-1. If the VI works correctly, they should match.

End of Exercise 2-1

Table 2-1. Testing Values for Seconds Breakdown.vi

Input Output

0 seconds 0 hours, 0 minutes, 0 seconds

60 seconds 0 hours, 1 minute, 0 seconds

3600 seconds 1 hour, 0 minutes, 0 seconds

3665 seconds 1 hour, 1 minutes, 5 seconds

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-26 ni.com

G. Searching for Controls, VIs, and Functions
When you access the Controls and Functions palettes from the View menu,
there are two buttons at the top of the palette:

Search—Changes the palette to search mode so you can perform text-based
searches to locate controls, VIs, or functions on the palettes. While a palette
is in search mode, click the Return button to exit search mode and return to
the palette.

View—Provides options for selecting a format for the current palette,
showing and hiding categories for all palettes, and sorting items in the Text
and Tree formats alphabetically. Select Options from the shortcut menu to
display the Controls/Functions Palettes page of the Options dialog box, in
which you can select a format for all palettes. This button appears only if
you click the thumbtack in the upper left corner of a palette to pin the palette.

Until you are familiar with the location of VIs and functions, search for the
function or VI using the Search button. For example, if you want to find the
Random Number function, click the Search button on the Functions palette
toolbar and start typing Random Number in the text box at the top of the
palette. LabVIEW lists all matching items that either start with or contain
the text you typed. You can click one of the search results and drag it to the
block diagram, as shown in Figure 2-18.

Figure 2-18. Searching for an object in the Functions palette

Double-click the search result to highlight its location on the palette. If the
object is one you need to use frequently, you can add it to your Favorites

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-27 LabVIEW Introduction Course Manual

category. Right-click the object and select Add Item to Favorites, as shown
in Figure 2-19.

Figure 2-19. Adding an Item to the Favorites Category of a Palette

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-28 ni.com

Exercise 2-2 Concept: Navigating Palettes

Goal
Learn to find controls and functions.

Description

1. Open Navigating Palettes.exe in the C:\Exercises\LabVIEW
Basics I\Navigating Palettes directory.

2. Follow the instructions given. This simulation demonstrates how to find
a control or function.

3. Using the instructions given in the simulation, place the DAQ Assistant
Express VI in the Favorites category of the Functions palette.

End of Exercise 2-2

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-29 LabVIEW Introduction Course Manual

H. Selecting a Tool
You can create, modify and debug VIs using the tools provided by
LabVIEW. A tool is a special operating mode of the mouse cursor. The
operating mode of the cursor corresponds to the icon of the tool selected.
LabVIEW chooses which tool to select based on the current location of the
mouse.

Figure 2-20. Tools Palette

Tip You can manually choose the tool you need by selecting it on the Tools palette.
Select View»Tools Palette to display the Tools palette.

Operating Tool
When the mouse cursor changes to the icon shown at left, it is using the
Operating tool. The Operating tool changes the values of a control. For
example, in Figure 2-21 the Operating tool moves the pointer on the
Horizontal Pointer Slide. When the mouse hovers over the pointer, the
cursor automatically accesses the Operating tool.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-30 ni.com

Figure 2-21. Using the Operating Tool

The Operating tool is mostly used on the front panel, but you also can use
the Operating tool on the block diagram to operate increment/decrement
buttons.

Positioning Tool
When the mouse cursor is an arrow, shown at left, the Positioning tool is
functioning. The Positioning tool selects or resizes objects. For example, in
Figure 2-22 the Positioning tool selects the Number of Measurements
numeric control. After selecting an object, you can move, copy, or delete the
object. When the mouse hovers over the edge of an object, the cursor
automatically accesses the Positioning tool.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-31 LabVIEW Introduction Course Manual

Figure 2-22. Using the Positioning Tool to select an object

If the mouse hovers over a resizing node of an object, the cursor mode
changes to show that you can resize the object, as shown in Figure 2-23.
Notice that the cursor is hovering over a corner of the XY Graph at a resizing
node, and the cursor mode changes to a double-sided arrow.

Figure 2-23. Using the Positioning tool to resize an object

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-32 ni.com

You can use the Positioning tool on both the front panel and the block
diagram.

Labeling Tool
When the mouse cursor changes to the icon shown at left, the Labeling tool
is in operation. Use the Labeling tool to enter text in a control, to edit text,
and to create free labels. For example, in Figure 2-24 the Labeling tool
enters text in the Number of Measurements numeric control. When the
mouse hovers over the interior of the control, the cursor automatically
accesses the Labeling tool. Click once to place a cursor inside the control.
Then. double-click to select the current text.

Figure 2-24. Using the Labeling Tool

When you are not in a specific area of a front panel or block diagram that
accesses a certain mouse mode, the cursor appears as cross-hairs. When the
cross-hairs mode is active, you can double-click to access the Labeling tool
and create a free label.

Wiring Tool
When the mouse cursor changes to the icon shown at left, the Wiring tool is
in operation. Use the Wiring tool to wire objects together on the block
diagram. For example, in Figure the Wiring tool wires the Number of
Measurements terminal to the count terminal of the For Loop. When the
mouse hovers over the exit or entry point of a terminal or over a wire, the
cursor automatically accesses the Wiring tool.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-33 LabVIEW Introduction Course Manual

Figure 2-25. Using the Wiring Tool

The Wiring tool works mainly with the block diagram and when you create
a connector pane on the front panel.

Other Tools Accessed from the Palette
You can access the Operating, Positioning, Labeling, and Wiring tools
directly from the Tools palette, rather than using the Auto tool selection
mode. Select View»Tools Palette to access the Tools palette.

Figure 2-26. The Tools Palette

The top item in the Tools palette, shown at left, is the Automatic Tool
Selection. When this is selected, LabVIEW automatically chooses a tool
based on the location of your cursor. You can turn off Auto tool by
deselecting the item, or by selecting another item in the palette. There are
some additional tools on the palette, as described below:

Use the Object Shortcut Menu tool, shown at left, to access an object
shortcut menu with the left mouse button.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-34 ni.com

Use the Scrolling tool, shown at left, to scroll through windows without
using scrollbars.

Use the Breakpoint tool, shown at left, to set breakpoints on VIs, functions,
nodes, wires, and structures to pause execution at that location.

Use the Probe tool, shown at left, to create probes on wires on the block
diagram. Use the Probe tool to check intermediate values in a VI that
produces questionable or unexpected results.

Use the Color Copy tool, shown at left, to copy colors for pasting with the
Coloring tool.

Use the Coloring tool, shown at left, to color an object. The Coloring tool
also displays the current foreground and background color settings.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-35 LabVIEW Introduction Course Manual

Exercise 2-3 Concept: Selecting a Tool

Goal
Use the Automatic Tool Selection to build experience for understanding its
operation.

Description
During this exercise, you complete tasks in a partially built front panel and
block diagram. These tasks give you experience in using the Auto tool.

1. Open the Using Temperature.vi.

❑ Open LabVIEW.

❑ Select File»Open.

❑ Navigate to the C:\Exercises\LabVIEW Basics I\Using
Temperature directory.

❑ Select the Using Temperature.vi.

Figure 2-27 shows an example of the front panel as it appears after your
modifications. You increase the size of the waveform graph, rename the
numeric control, change the value of the numeric control, and move the
pointer on the horizontal pointer slide.

Figure 2-27. Using Temperature VI Front Panel

2. Expand the waveform graph horizontally using the Positioning tool.

❑ Move the cursor to the left edge of the Waveform Graph.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-36 ni.com

❑ Move the cursor to the middle left resizing node until the cursor
changes to a double arrow, as shown in Figure 2-28.

❑ Drag the repositioning point until the Waveform Graph is the size
you want.

3. Rename the numeric control to Number of Measurements using the
Labeling Tool

❑ Move the cursor to the text Numeric.

❑ Double click the word Numeric.

❑ Enter the text Number of Measurements.

❑ Complete the entry by pressing the <Enter> key on the numeric
keypad, pressing the Enter Text button on the toolbar, or clicking
the mouse outside of the control.

4. Change the value of the Number of Measurements control to 20 using
the Labeling tool.

❑ Move the cursor to the interior of the numeric control.

❑ When the cursor changes to the Labeling tool icon, as shown at left,
press the mouse button.

❑ Enter the text 20.

❑ Complete the entry by pressing the <Enter> key on the numeric
keypad, pressing the Enter Text button on the toolbar, or clicking
the mouse outside of the control.

5. Change the value of the pointer on the horizontal pointer slide using the
Operating tool.

❑ Move the cursor to the pointer on the slide.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-37 LabVIEW Introduction Course Manual

❑ When the cursor changes to the Operating tool icon, as shown at left,
press the mouse button and drag to the value you want.

❑ Leave the value at a value greater than 0.

6. Try changing the value of objects, resizing objects, and renaming
objects until you are comfortable with using these tools.

Figure 2-28 shows an example of the block diagram as it appears after your
modifications. You move the Number of Measurements terminal and wire
the terminal to the count terminal of the For Loop.

Figure 2-28. Using Temperature VI Block Diagram

7. Open the block diagram.

8. Move the Number of Measurements terminal using the Positioning tool.

❑ Move the cursor to the Number of Measurements terminal.

❑ Move the cursor in the terminal until the cursor changes to an arrow,
as shown at left.

❑ Click and drag at the terminal to the new location as shown in
Figure 2-28.

9. Wire the Number of Measurements terminal to the count terminal of the
For Loop using the Wiring tool.

❑ Move the cursor to the Number of Measurements terminal.

❑ Move the cursor to the right of the terminal, stopping when the
cursor changes to a wiring spool, as shown at left.

❑ Click to start the wire.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-38 ni.com

❑ Move the cursor to the count (N) terminal, shown at left, of the For
Loop.

❑ Click to end the wire.

10. Try moving other objects, deleting wires and rewiring them, and wiring
object and wires together until you are comfortable with using these
tools.

11. Change the value of the Delay (sec) control to something greater than
zero (0).

12. Click the Run button, shown at left, to run the VI.
The time required to execute this VI is equivalent to Number of
Measurements times Delay (Sec). Once the VI is finished executing, the
data is displayed on the Temperature Graph.

13. Select File»Close to close the VI. You do not need to save the VI.

14. Click the Don’t Save All button to save changes before closing.

End of Exercise 2-3

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-39 LabVIEW Introduction Course Manual

I. Dataflow
LabVIEW follows a dataflow model for running VIs. A block diagram node
executes when it receives all required inputs. When a node executes, it
produces output data and passes the data to the next node in the dataflow
path. The movement of data through the nodes determines the execution
order of the VIs and functions on the block diagram.

Visual Basic, C++, JAVA, and most other text-based programming
languages follow a control flow model of program execution. In control
flow, the sequential order of program elements determines the execution
order of a program.

For a dataflow programming example, consider a block diagram that adds
two numbers and then subtracts 50.00 from the result of the addition, as
shown in Figure 2-29. In this case, the block diagram executes from left to
right, not because the objects are placed in that order, but because the
Subtract function cannot execute until the Add function finishes executing
and passes the data to the Subtract function. Remember that a node executes
only when data are available at all of its input terminals and supplies data to
the output terminals only when the node finishes execution.

Figure 2-29. Dataflow Programming Example

In Figure 2-30, consider which code segment would execute first—the Add,
Random Number, or Divide function. You cannot know because inputs to
the Add and Divide functions are available at the same time, and the
Random Number function has no inputs. In a situation where one code
segment must execute before another, and no data dependency exists
between the functions, use other programming methods, such as error
clusters, to force the order of execution. Refer to Lesson 4, Relating Data,
for more information about error clusters.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-40 ni.com

Figure 2-30. Dataflow Example for Multiple Code Segments

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-41 LabVIEW Introduction Course Manual

Exercise 2-4 Concept: Dataflow

Goal
Understand how dataflow determines the execution order in a VI.

Description
1. Open the Dataflow.exe simulation from the

C:\Exercises\LabVIEW Basics I\Dataflow directory.

2. Follow the instructions given. This simulation demonstrates dataflow.

End of Exercise 2-4

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-42 ni.com

J. Building a Simple VI
Most LabVIEW VIs have three main tasks: acquiring some sort of data,
analyzing the acquired data, and presenting the result. When each of these
parts are simple, you can complete the entire VI using very few objects on
the block diagram. Express VIs are designed specifically for completing
common, frequently used operations. In this section, you learn about some
Express VIs in each of these categories: acquire, analyze, and present. Then
you learn to build a simple VI using these three parts, as shown in Figure 2-
31.

Figure 2-31. Acquire, Analyze and Present Example Front Panel and Block Diagram

On the Functions palette, the Express VIs are grouped together in the
Express category. Express VIs use the dynamic data type to pass data
between Express VIs.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-43 LabVIEW Introduction Course Manual

Acquire
Express VIs used for the Acquire task include the following: DAQ
Assistant, Instrument I/O Assistant, Simulate Signal, and Read from
Measurement File.

DAQ Assistant
The DAQ Assistant acquires data through a data acquisition board.You must
use this Express VI frequently throughout this course. Refer to Lesson 8,
Navigating LabVIEW, for more information about the DAQ Assistant. Until
you learn more about data acquisition, you only use one channel of the data
acquisition board, CH0. This channel is connected to a temperature sensor
on the DAQ Signal Accessory. You can touch the temperature sensor to
change the temperature the sensor reads.

Instrument I/O Assistant
The Instrument I/O Assistant acquires instrument control data, usually from
a GPIB or serial interface. Refer to Lesson 9, Instrument Control for more
information about the Instrument I/O Assistant.

Simulate Signal
The Simulate Signal Express VI generates simulated data such as a sine
wave.

Read From Measurement File
The Read From Measurement File Express VI reads a file that was created
using the Write From Measurement File Express VI. It specifically reads
LVM or TDM file formats. This Express VI does not read ASCII files. Refer
to Lesson 10, Analyzing and Storing Measurement Data for more
information on reading data from a file.

Analyze
Express VIs used for the Analyze task include the following: amplitude and
level measurements, statistics, tone measurements, and so on.

Amplitude and Level Measurements
The Amplitude and Level Measurements Express VI performs voltage
measurements on a signal. These include DC, rms, maximum peak,
minimum peak, peak to peak, cycle average and cycle rms measurements.

Statistics
The Statistics Express VI calculates statistical data from a waveform. This
includes mean, sum, standard deviation, and extreme values.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-44 ni.com

Spectral Measurements
The Spectral Measurements Express VI performs spectral measurement on
a waveform, such as magnitude and power spectral density.

Tone Measurements
The Tone Measurements Express VI searches for a single tone with the
highest frequency or highest amplitude. It also finds the frequency and
amplitude of a single tone.

Filter
The Filter Express VI processes a signal through filters and windows. Filters
used include the following: Highpass, Lowpass, Bandpass, Bandstop, and
Smoothing. Windows used include Butterworth, Chebyshev, Inverse
Chebyshev, Elliptical, and Bessel.

Present
Present tasks are Express VI that perform a function, such as the Write to
Measurement File Express VI or are indicators that present data on the front
panel of the VI. The most commonly used indicators for this task include the
Waveform Chart, the Waveform Graph, and the XY Graph. Common
Express VIs include the Write to Measurement File, the Build Text, DAQ
Assistant, and the Instrument I/O Assistant. In this case, the DAQ Assistant
and the Instrument I/O Assistant provide output data from the computer to
the DAQ board or an external instrument.

Write to Measurement File
The Write to Measurement File Express VI writes a file in LVM or TDM
file format. Refer to Lesson 10, Analyzing and Storing Measurement Data,
for more information on writing to measurement files.

Build Text
The Build Text Express VI creates text, usually for displaying on the front
panel or exporting to a file or instrument. Refer to Lesson 10, Analyzing and
Storing Measurement Data, for more information on creating strings.

Running a VI
After you configure the Express VIs using the dialog boxes, and wire the
Express VIs together, you can run the VI. When you finish building your VI,
click the Run button on the toolbar, shown at left, to execute the VI.

While the VI is running, the Run button icon changes to the one shown at
left. After the execution completes, the Run button icon changes back to its
original state, and the front panel indicators contain data.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-45 LabVIEW Introduction Course Manual

Run Button Errors
If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
appears broken, shown as follows, when the VI you are creating or editing
contains errors.

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Generally, this means that a required input is not wired, or a wire is broken.
Press the broken run button to access the Error List dialog box. The Error
List dialog box lists each error and describes the problem. You can double-
click an error to go directly to the error. Refer to Lesson 5, Debugging VIs,
for more information on debugging.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-46 ni.com

Exercise 2-5 Simple AAP VI

Goal
Create a simple VI that accomplishes the acquire, analyze, and present
tasks.

Scenario
You need to acquire a sine wave for 2 seconds, determine and display the
average value, log the data, and display the sine wave on a graph.

Design
The input for this problem is an analog channel of sine wave data. The
outputs include a graph of the sine data and a file logging the data.

Flow Chart

Figure 2-32. Simple AAP VI Flow Chart

Acquire Data

Determine
Average Value

Display Average
Value

Display Data

Log Data

ACQUIRE ANALYZE PRESENT

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-47 LabVIEW Introduction Course Manual

Program Architecture—Quiz
1. Acquire: Circle the Express VI that is best suited to acquiring a sine

wave from a data acquisition board.

2. Analyze: Circle the Express VI that is best suited to determining the
average value of the acquired data.

3. Present: Circle the Express VIs and/or indicators that are best suited to
displaying the data on a graph and logging the data to file.

DAQ Assistant The DAQ Assistant acquires data
through a data acquisition board.

Instrument I/O
Assistant

The Instrument I/O Assistant acquires
instrument control data, usually from a
GPIB or serial interface.

Simulate Signal The Simulate Signal Express VI
generates simulated data, such as a sine
wave.

Tone Measurements The Tone Measurements Express VI
finds the frequency and amplitude of a
single tone.

Statistics The Statistics Express VI calculates
statistical data from a waveform.

Amplitude and Level
Measurements

The Amplitude and Level
Measurements Express VI performs
voltage measurements on a signal.

Filter The Filter Express VI processes a signal
through filters and windows.

DAQ Assistant The DAQ Assistant acquires data
through a data acquisition board.

Write to Measurement
File

The Write to Measurement File Express
VI writes a file in LVM or TDM file
format.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-48 ni.com

Refer to the next page for answers to this quiz.

Build Text The Build Text Express VI creates text,
usually for displaying on the front panel
or exporting to a file or instrument.

Waveform Graph The waveform graph displays one or
more plots of evenly sampled
measurements.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-49 LabVIEW Introduction Course Manual

Program Architecture—Solutions to Quiz
1. Acquire: Use the DAQ Assistant to acquire the sine wave from the data

acquisition board.

2. Analyze: Use the Statistics Express VI to determine the average value
of the sine wave. Because this signal is cyclical, you could also use the
Cycle Average option in the Amplitude and Level Measurements to
determine the average value of the sine wave.

3. Present: Use the Write to Measurement File Express VI to log the data
and use the Waveform Graph to display the data on the front panel.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-50 ni.com

Implementation

1. Prepare your hardware to generate a sine wave.

Hardware

❑ Find the DAQ Signal Accessory and visually confirm that it is
connected to the DAQ board in your computer.

❑ Using a wire, connect the Analog In Channel 1 to the Sine Function
Generator, as shown in Figure 2-33.

❑ Set the Frequency Range switch and the Frequency Adjust knob
to their lowest levels.

❑ Skip to step 2.

Figure 2-33. Connection for the DAQ Signal Accessory

No Hardware

❑ Skip this step if you are not using hardware.

2. Open LabVIEW.

3. Open a blank VI.

4. Save the VI as Simple AAP.vi.

1 2

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-51 LabVIEW Introduction Course Manual

❑ Select File»Save.

❑ Navigate to the C:\Exercises\LabVIEW Basics I\ Simple
AAP directory.

❑ Name the VI Simple AAP.vi.

❑ Click OK.

Build a front panel similar to the one in Figure 2-34.

Figure 2-34. Acquire, Analyze and Present Front Panel

5. Place a waveform graph on the front panel to display the acquired data.

❑ If the Controls palette is not already open, select View»Controls
Palette from the LabVIEW menu.

❑ On the Controls palette, select the Express category.

❑ Select the Graph Indicators category from within the Express
category.

❑ Select the waveform graph.

❑ Place the graph on the front panel.

6. Place a numeric indicator on the front panel to display the average value.

❑ Collapse the Graph Indicators category by selecting Express on
the Controls palette.

❑ Select the Numeric Indicators category from within the Express
category.

❑ Select the numeric indicator.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-52 ni.com

❑ Place the indicator on the front panel.

❑ Enter Average Value in the label of the numeric indicator.

Build a block diagram similar to the one in Figure 2-35.

Figure 2-35. Acquire, Analyze, and Present Block Diagram

7. Open the block diagram of the VI.

❑ Select Window»Show Block Diagram.

Note The terminals corresponding to the new front panel objects appear on the block
diagram.

8. Acquire a sine wave for 2 seconds.

Hardware
The sine wave is generated on Analog In Channel 1. Use the DAQ
Assistant Express VI to acquire 2 seconds of data.

❑ On the Functions palette, select the Express category.

❑ Select Input from the Express category.

❑ Select the DAQ Assistant from the Input category.

❑ Place the DAQ Assistant on the block diagram.

❑ Wait for the DAQ Assistant dialog box to open.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-53 LabVIEW Introduction Course Manual

❑ Select Analog Input»Voltage for the measurement type.

❑ Select ai1 (analog input channel 1) for the physical channel.

❑ Click the Finish button.

❑ On the Task Timing tab select N Samples as the Acquisition Mode.

❑ In the Clock Settings section enter 2,000 in Samples To Read.

❑ Enter 1,000 in Rate (Hz).

Tip Reading 2,000 samples at a rate of 1,000 Hertz retrieves 2 seconds worth of data.

❑ Click the OK button.

❑ Skip to step 9.

No Hardware
Simulate the acquisition of a 100 Hz sine wave sampled at 1kHz for 2
seconds. Use the Simulate Signal Express VI.

❑ On the Functions palette, select the Express category.

❑ Select Input from the Express category.

❑ Select Simulate Signal from the Input category.

❑ Place the Simulate Signal Express VI on the block diagram.

❑ Wait for the Simulate Signal dialog box to open.

❑ Select Sine for the signal type.

❑ Set the signal frequency to 100.

❑ In the Timing section, set the Samples per second (Hz) to 1,000.

❑ In the Timing section, deselect Automatic for the Number of
samples.

❑ In the Timing section, set the Number of samples to 2,000.

❑ Select the Simulate acquisition timing selection.

❑ Click the OK button.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-54 ni.com

9. Determine the average value of the data acquired by using the Statistics
Express VI.

❑ Collapse the Express subpalette by selecting Express on the
Functions palette.

❑ Select the Signal Analysis subpalette.

❑ Select the Statistics Express VI and drag-and-drop the Statistics
Express VI to the block diagram to the right of the DAQ Assistant.

❑ Wait for the Statistics Express VI dialog box to open.

❑ Place a checkmark in the Arithmetic mean checkbox.

❑ Click OK.

10. Log the generated sine data to a LabVIEW Measurement File.

❑ Select Express on the Functions palette.

❑ Select the Output category.

❑ Select Write to Measurement File.

❑ Place the Write to Measurement File Express VI on the block
diagram below the Statistics Express VI.

❑ Wait for the Write to Measurement File Express VI dialog box to
open.

❑ Leave all settings as default.

❑ Click OK.

Note Future exercises do not detail the directions for finding specific functions or
controls in the palettes. Use the palette search feature to locate functions and controls.

11. Wire the data from the DAQ Assistant (or Simulate Signal Express VI)
to the Statistics Express VI.

❑ Place the mouse cursor over the data output of the DAQ Assistant
(or Simulate Signal Express VI) at the location where the cursor
changes to the Wiring tool.

❑ Click the mouse button to start the wire.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-55 LabVIEW Introduction Course Manual

❑ Place the mouse cursor over the Signals input of the Statistics
Express VI and click the mouse button to end the wire.

12. Wire the data to the graph indicator.

❑ Place the mouse cursor over the data output wire of the DAQ
Assistant (or Simulate Signal Express VI) at the location where the
cursor changes to the Wiring tool.

❑ Click the mouse button to start the wire.

❑ Place the mouse cursor over the graph indicator and click the mouse
button to end the wire.

13. Wire the Arithmetic Mean output of the Statistics Express VI to the
Average Value numeric indicator.

❑ Place the mouse cursor over the Arithmetic Mean output of the
Statistics Express VI at the location where the cursor changes to the
Wiring tool.

❑ Click the mouse button to start the wire.

❑ Place the mouse cursor over the Average Value numeric indicator
and click the mouse button to end the wire.

14. Wire the data output to the Signals input of the Write Measurement File
Express VI.

❑ Place the mouse cursor over the data output wire of the DAQ
Assistant (or Simulate Signal Express VI) at the location where the
cursor changes to the Wiring tool.

❑ Click the mouse button to start the wire.

❑ Place the mouse cursor over the Signals input of the Write
Measurement File Express VI and click the mouse button to end the
wire.

Note Future exercises do not detail the directions for wiring between objects.

15. Save the VI.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-56 ni.com

Testing

1. Switch to the front panel of the VI.

2. Set the graph properties to be able to view the sine wave.

❑ Right-click the waveform graph and select X Scale»Autoscale X to
deselect autoscaling.

❑ Right-click the waveform graph and select Visible Items»X
Scrollbar.

❑ Use the labeling tool to change the last number on the X Scale of the
waveform graph to .1.

3. Save the VI.

4. Run the VI.

5. Open the front panel of the VI by selecting Window»Show Front
Panel.

❑ Click the Run icon on the front panel toolbar.

The graph indicator should display a sine wave and the Average Value
indicator should display a number around zero. If the VI does not run as
expected, review the implementation steps.

6. Close the VI.

End of Exercise 2-5

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-57 LabVIEW Introduction Course Manual

K. LabVIEW Help Utilities
Use the Context Help window, the LabVIEW Help, and the NI Example
Finder to help you create and edit VIs. Refer to the LabVIEW Help and
manuals for more information about LabVIEW.

Context Help Window
The Context Help window displays basic information about LabVIEW
objects when you move the cursor over each object. To toggle display of the
Context Help window, select Help»Show Context Help, press the
<Ctrl-H> keys, or click the Show Context Help Window button, shown at
left, on the toolbar.

When you move the cursor over front panel and block diagram objects, the
Context Help window displays the icon for subVIs, functions, constants,
controls, and indicators, with wires attached to each terminal. When you
move the cursor over dialog box options, the Context Help window
displays descriptions of those options. In the Context Help window, the
labels of required terminals appear bold, recommended terminals appear as
plain text, and optional terminals appear dimmed. The labels of optional
terminals do not appear if you click the Hide Optional Terminals and Full
Path button, shown as follows, in the Context Help window.

Figure 2-36. Context Help Window

Click the Hide Optional Terminals and Full Path button located on the
lower left corner of the Context Help window to display the optional
terminals of a connector pane and to display the full path to a VI. Optional
terminals are shown by wire stubs, informing you that other connections
exist. The detailed mode displays all terminals, as shown in Figure 2-37.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-58 ni.com

Figure 2-37. Detailed Context Help Window

Click the Lock Context Help button to lock the current contents of the
Context Help window. When the contents are locked, moving the cursor
over another object does not change the contents of the window. To unlock
the window, click the button again. You also can access this option from the
Help menu.

If a corresponding LabVIEW Help topic exists for an object the Context
Help window describes, a blue Click here for more help. link appears in
the Context Help window. Also, the More Help button, shown at left, is
enabled. Click the link or the button to display the LabVIEW Help for more
information about the object.

LabVIEW Help
You can access the LabVIEW Help either by clicking the More Help button
in the Context Help window, selecting Help»Search the LabVIEW Help,
or clicking the blue Click here for more help link in the Context Help
window. You also can right-click an object and select Help from the
shortcut menu.

You can access the LabVIEW Help either by clicking the More Help button
in the Context Help window, selecting Help»Search the LabVIEW Help,
or clicking the blue

Click here for more help.

link in the Context Help window. You also can right-click an object and
select Help.

The LabVIEW Help contains detailed descriptions of most palettes, menus,
tools, VIs, and functions. The LabVIEW Help also includes step-by-step
instructions for using LabVIEW features. The LabVIEW Help includes links
to the following resources:

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-59 LabVIEW Introduction Course Manual

1. Related Documentation, which includes PDF versions of all LabVIEW
manuals.

2. Technical support resources on the National Instruments Web site, such
as the NI Developer Zone, the KnowledgeBase, and the Product
Manuals Library.

NI Example Finder
The New dialog box contains many LabVIEW template VIs that you can
use to start building VIs. However, these template VIs are only a subset of
the hundreds of example VIs included with LabVIEW. You can modify any
example VI to fit an application, or you can copy and paste from an example
into a VI that you create.

In addition to the example VIs that ship with LabVIEW, you also can access
hundreds of example VIs on the NI Developer Zone at ni.com/zone.
To search all examples using LabVIEW VIs, use the NI Example Finder.
The NI Example Finder is the gateway to all installed examples and the
examples located on the NI Developer Zone.

To launch the NI Example Finder, select Help»Find Examples from the
front panel or block diagram menu bar. You also can launch the NI Example
Finder by selecting Find Examples on the Getting Started dialog box.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-60 ni.com

Figure 2-38. NI Example Finder

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-61 LabVIEW Introduction Course Manual

Exercise 2-6 Concept: Using Help

Goal
Become familiar with using the Context Help window, the LabVIEW Help,
and the NI Example Finder.

Description
This exercise consists of a series of tasks designed to help you become
familiar with the LabVIEW Help tools. Complete the follow steps.

NI Example Finder

1. You have a GPIB board in your computer, and you want to learn how to
communicate with it using LabVIEW. Use the NI Example Finder to
find a VI that communicates with a GPIB board.

❑ Open LabVIEW.

❑ Select Help»Find Examples to open the NI Example Finder.

❑ Confirm that the Task option is selected on the Browse tab.

❑ Double-click the Hardware Input and Output task to find
examples related to hardware input and output.

❑ Double-click the GPIB task.

❑ Select the VI shown in this directory.

❑ Notice that a description of the VI is provided in the Information
window so that you can verify that this VI meets your needs.

❑ Double-click the VI name to open the VI.

❑ Close the VI after you finish exploring it.

2. You want to learn more about Express VIs, especially their use in
filtering signals. Use the NI Example Finder to find an appropriate VI.

❑ The NI Example Finder should still be open from the previous step.
If not, open the NI Example Finder.

❑ Click the Search tab in the NI Example Finder.

❑ Enter express in the Enter keyword(s) field to find VIs that
contain Express VIs.

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-62 ni.com

❑ Double-click the Express result that appears in the Double-click
keyword(s) field.

❑ This keyword is associated with many example VIs, as
demonstrated by the number of VIs returned. You can select any one
of these VIs and read the description in the Information window.

❑ Double-click the Express Filter.vi to open it.

Context Help Window

3. Use the Context Help window to learn about the Express VIs used in
the Express Filter VI.

❑ Open the block diagram by selecting Window»Show Block
Diagram.

❑ Open the Context Help window by selecting Help»Show Context
Help.

❑ Move the Context Help window to a convenient area, where the
window does not hide part of the block diagram.

❑ Place your mouse cursor over the Simulate Signal Express VI. The
Context Help window content changes to show information about
the object that your mouse is over.

❑ Move your mouse over another Express VI. Notice the Context
Help window content changes in reference to the location of the
mouse cursor.

❑ Move your mouse over one of the Tone Measurements Express VIs.

❑ Examine the configuration details in the Context Help window.
This gives you the information about how the Express VI is
configured.

❑ Double-click the Express VI to open the configuration dialog box.
Notice that the selections in the configuration dialog box match the
information in the Context Help window.

❑ Click the OK button to close the configuration dialog box.

4. Anchor the Context Help window so that you can move your mouse
without the contents of the window changing. The Context Help
window should show information about the Simulate Signal Express VI.

❑ Move your mouse over the Simulate Signal Express VI.

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-63 LabVIEW Introduction Course Manual

❑ To anchor the context help window, select the Lock button in the
lower left corner of the window, shown at left.

Tip If the contents of the window change before you locked the window, avoid passing
your mouse over other objects on the way to the Context Help window. Move the
window closer to the object of interest to view context help for that item.

❑ Move your mouse over another object. Notice the contents of the
window do not change while the lock button is selected.

❑ Deselect the Lock button to resume normal operation of the
window.

5. Modify the Description and Tip associated with the Simulated
frequency control to change the content shown in the Context Help
window.

❑ Select Window»Show Front Panel to open the front panel of
the VI.

❑ Move your mouse over the Simulated frequency control.

❑ Read the contents of the Context Help window.

❑ Right-click the Simulated frequency control.

❑ Select Description and Tip from the shortcut menu.

❑ Replace the text in the "Simulated frequency" Description box
with the text This is the description of the control.

❑ Replace the text in the "Simulated frequency" Tip box with the
text This is the tip for the control.

❑ Click OK.

❑ Move your mouse over the Simulated frequency control.

❑ Notice that the contents of the Context Help window changed to
match the text you typed in the Description field of the Description
and Tip dialog box.

❑ Run the VI.

❑ Place your mouse cursor over the Simulated frequency control.

❑ Notice that the tool tip that appears matches the text you typed in the
Tip field of the Description and Tip dialog box.

❑ Click the Stop button.

LabVIEW Help

6. Use the LabVIEW Help to learn more information about the Filter
Express VI.

❑ Select Window»Show Block Diagram to open the block diagram
of the VI.

❑ Right-click the Filter Express VI and select Help from the shortcut
menu. This opens the LabVIEW Help topic for the Filter Express VI.

Note To access the LabVIEW Help for this topic, you can also select the Detailed Help
hyperlink in the Context Help window while the Filter Express VI is selected, or click
the question mark icon in the Context Help window.

❑ Explore the topic. For example, what is the purpose of the Phase
Response dialog box option?

❑ Click the Find on the Functions Palette button at the top of the
Help window.

❑ Close the LabVIEW Help window.

7. Close the Express Filter VI when you finish. Do not save changes.

End of Exercise 2-6

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-65 LabVIEW Introduction Course Manual

Self-Review: Quiz
Refer to Figure 2-39 to answer the following quiz questions.

Figure 2-39. Dataflow Questions

1. Which of the following functions execute first?

a. Add

b. Subtract

c. Unknown

2. Which of the following functions execute first?

a. Sine

b. Divide

3. Which following functions execute first?

a. Random Number

b. Divide

c. Add

d. Unknown

4. Which following functions execute last?

a. Random Number

b. Subtract

c. Add

d. Unknown

5. What are the three parts of a VI?

a. Front Panel

b. Block Diagram

c. Project

d. Icon/Connector Pane

Lesson 2 Navigating LabVIEW

© National Instruments Corporation 2-67 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

Figure 2-40. Dataflow Questions

a. Add

b. Subtract

c. Unknown

6. Which of the following functions execute first?

a. Sine

b. Divide

c. Unknown

7. Which following functions execute first?

a. Random Number

b. Divide

c. Add

d. Unknown

8. Which following functions execute last?

a. Random Number

b. Subtract

c. Add

d. Unknown

9. What are the three parts of a VI?

a. Front Panel

b. Block Diagram

c. Project

d. Icon/Connector Pane

Lesson 2 Navigating LabVIEW

LabVIEW Introduction Course Manual 2-68 ni.com

Notes

© National Instruments Corporation 3-1 LabVIEW Introduction Course Manual

3
Implementing a VI

This lesson teaches you how to implement code in LabVIEW. These skills
include designing a user interface, choosing a data type, documenting your
code, using looping structures such as While Loops and For Loops, adding
software timing to your code, displaying your data as a plot, and making
decisions in your code using a case structure.

Topics

A. Front Panel Design

B. Block Diagram Terminals

C. Documenting Code

D. While Loops

E. For Loops

F. Timing a VI

G. Iterative Data Transfer

H. Plotting Data

I. Case Structures

J. Formula Nodes

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-2 ni.com

A. Front Panel Design
In the design phase of the software development method, you identify the
inputs and outputs of the problem. This identification leads directly to the
design of the front panel.

Retrieve the inputs of the problem from the following methods:

• acquiring from a device such as a data acquisition board or a multimeter.

• reading directly from a file.

• manipulating controls.

You can display the outputs of the problem with indicators or log the outputs
to a file. You also can output data to a device using signal generation.
Lessons about data acquisition, signal generation and file logging appear
later in this course.

Design of Controls and Indicators
When choosing controls and indicators, make sure that they are appropriate
for the task you want to perform. For example, when you want to determine
the frequency of a sine wave, choose a dial control, or when you want to
display temperature, choose a thermometer indicator.

Labels/Captions
When creating labels for controls and indicators, make sure to label them
clearly. These labels help users identify the function for each control and
indicator. Also, clear labelling helps you document your code in the block
diagram. Control and indicator labels correspond to the names of terminals
on the block diagram.

Captions help you describe a control on the front panel. Captions do not
appear on the block diagram. Using captions allows you to document the
user interface without cluttering the block diagram with long names. For
example, in the Weather Station, you must provide an upper boundary for
the temperature level. If the temperature rises above this level, the Weather
Station indicates a heatstroke warning. You could call this control Upper
Temperature Limit (Celsius). However, this label would occupy
unnecessary space on the block diagram. Instead use a caption for the
control Upper Temperature Limit (Celsius) and use the label to
create a shorter description for the block diagram, such as Upper Temp.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-3 LabVIEW Introduction Course Manual

Control/Indicator Options
You can set default values for controls. Figure 3-1 shows a default value of
35 degrees Celsius. By setting a default value, you can assume a reasonable
value for a VI if the user does not set another value during run-time. To set
the default value complete the following steps:

1. Enter the desired value

2. Right-click the control and select Data Operations»Make Current
Value Default from the shortcut menu.

You also can hide and view items on controls and indicators. For example,
in Figure 3-1, you can see both the caption and the label. However, you only
need to see the caption. To hide the label, right-click the control and select
Visible Items»Label as shown in Figure 3-2.

1 Front Panel 2 Block Diagram

1

2

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-4 ni.com

Figure 3-1. Hiding a Label on the Front Panel

Using Color
Proper use of color can improve the appearance and functionality of your
front panel. Using too many colors, however, can result in color clashes
that cause the front panels to look too busy and distracting.

LabVIEW provides a color picker that can aid in selecting appropriate
colors. Select the Coloring tool and right-click an object or workspace to
display the color picker. The top of the color picker contains a grayscale
spectrum and a box you can use to create transparent objects. The second
spectrum contains muted colors that are well suited to backgrounds and
front panel objects. The third spectrum contains colors that are well suited
for highlights. Moving your cursor vertically from the background colors
to the highlight colors helps you select appropriate highlight colors for a
specific background color.

The following tips are helpful for color matching:

• Use the default LabVIEW colors. If a color is not available on a
computer, LabVIEW replaces it with the closest match. You also can use
system colors to adapt the appearance of a front panel to the system
colors of any computer that runs the VI.

• Start with a gray scheme. Select one or two shades of gray and choose
highlight colors that contrast well against the background.

1 Before Hiding the Label 2 After Hiding the Label

1 2

Lesson 3 Implementing a VI

© National Instruments Corporation 3-5 LabVIEW Introduction Course Manual

• Add highlight colors sparingly—on plots, abort buttons, and perhaps
the slider thumbs—for important settings. Small objects need brighter
colors and more contrast than larger objects.

• Use differences in contrast more often that differences in color.
Color-blind users find it difficult to discern objects when differences
are in color rather than contrast.

• Use spacing and alignment to group objects instead of grouping by
matching colors.

• Good places to learn about color are stand-alone instrument panels,
maps, and magazines.

• Choose objects from the System Controls category of the Controls
palette if you want your front panel controls to use the system colors.

Spacing and Alignment
White space and alignment are probably the most important techniques for
grouping and separation. The more items that your eye can find on a line,
the cleaner and more cohesive the organization seems. When items are on
a line, the eye follows the line from left to right or top to bottom. This is
related to the script direction. Although some cultures view items right to
left, almost all follow top to bottom.

When you design the front panel, consider how users interact with the VI
and group controls and indicators logically. If several controls are related,
add a decorative border around them or put them in a cluster.

Centered items are better than random but much less orderly than either left
or right alignment. A band of white space acts as a very strong means of
alignment. Centered items typically have ragged edges and the order is not
as easily noticed.

Do not place front panel objects too closely together. Try to leave some
blank space to make the front panel easier to read. Blank space also prevents
users from accidentally clicking the wrong control or button.

Left-justify menus and right-justify related shortcuts as shown in
Figure 3-3 on the left side: the LabVIEW File menu. Locating items in the
center-justified menu as shown in the same example on the right is more
difficult. Notice how the dividing lines between menu sections in the left
example help you find the items quickly and strengthen the relationship
between the items in the sections.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-6 ni.com

Figure 3-2. Good and Bad Menu Examples

Avoid placing objects on top of other objects. Placing a label or any other
object over or partially covering a control or indicator slows down screen
updates and can make the control or indicator flicker.

Text and Fonts
Text is easier to read and information is more easily understood when
displayed in an orderly way. Use the default LabVIEW fonts. LabVIEW
replaces the built-in fonts with comparable font families on different
platforms. If you select a different font, LabVIEW substitutes the closest
match if the font is unavailable on a computer.

Using too many font styles can make your front panel look busy and
disorganized. Instead, use two or three different sizes of the same font.
Serifs help people to recognize whole words from a distance. If you are
using more than one size of a font, make sure the sizes are noticeably
different. If not, it may look like a mistake. Similarly, if you use two
different fonts, make sure they are distinct.

Design your front panels with larger fonts and more contrast for industrial
operator stations. Glare from lighting or the need to read information from
a distance can make normal fonts difficult to read. Also, remember that

1 Good Menu 2 Bad Menu

1 2

Lesson 3 Implementing a VI

© National Instruments Corporation 3-7 LabVIEW Introduction Course Manual

touch screens generally require larger fonts and more spacing between
selection items.

Note If fonts do not exist on a target machine, substituted fonts can cause the user
interface to appear skewed.

User Interface Tips and Tools
Some of the built-in LabVIEW tools for making user-friendly front panels
include system controls, tab controls, decorations, menus, and automatic
resizing of front panel objects.

System Controls
A common user interface technique is to display dialog boxes at appropriate
times to interact with the user. You can make a VI behave like a dialog box
by selecting File»VI Properties, selecting the Window Appearance
category, and selecting the Dialog option.

Use the system controls and indicators located on the System palette in
dialog boxes you create. Because the system controls change appearance
depending on which platform you run the VI, the appearance of controls in
VIs you create is compatible on all LabVIEW platforms. When you run the
VI on a different platform, the system controls adapt their color and
appearance to match the standard dialog box controls for that platform.

System controls typically ignore all colors except transparent. If you are
integrating a graph or non-system control into the front panel, try to match
them match by hiding some borders or selecting colors similar to the system
colors.

Tab Controls
Physical instruments usually have good user interfaces. Borrow heavily
from their design principles, but use smaller or more efficient controls, such
as ring controls or tab controls, where appropriate. Use tab controls to
overlap front panel controls and indicators in a smaller area.

To add another page to a tab control, right-click a tab and select Add Page
Before or Add Page After from the shortcut menu. Relabel the tabs with
the Labeling tool, and place front panel objects on the appropriate pages.
The terminals for these objects are available on the block diagram, as are
terminals for any other front panel object (except Decorations).

You can wire the enumerated control terminal of the tab control to the
selector of a Case structure to produce cleaner block diagrams. With this
method you associate each page of the tab control with a subdiagram, or
case, in the Case structure. You place the control and indicator terminals

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-8 ni.com

from each page of the tab control—as well as the block diagram nodes
and wires associated with those terminals—into the subdiagrams of the
Case structure.

Decorations
Use the decorations located on the Decorations palette to group or separate
objects on a front panel with boxes, lines, or arrows. These objects are for
decoration only and do not display data.

Menus
Use custom menus to present front panel functionality in an orderly way and
in a relatively small space. Using small amounts of space leaves room on the
front panel for critical controls and indicators, items for beginners, items
needed for productivity, and items that do not fit well into menus. You also
can create keyboard shortcuts for menu items.

To create a run-time shortcut menu for front panel objects, right-click the
front panel object and select Advanced»Run-Time Shortcut Menu»Edit.
To create a custom run-time menu for your VI, select Edit»Run-Time
Menu.

Automatic Resizing of Front Panel Objects
Use the VI Properties»Window Size options to set the minimum size of
a window, maintain the window proportion during screen changes, and set
front panel objects to resize in two different modes. When you design a VI,
consider whether the front panel can display on computers with different
screen resolutions. Select File»VI Properties, select Window Size in the
Category pull-down menu, and place a checkmark in the Maintain
Proportions of Window for Different Monitor Resolutions checkbox to
maintain front panel window proportions relative to the screen resolution.

Most professional applications do not enlarge every control when the
window changes size, but you can scale a table, graph, or list with the
window, leaving other objects near the window edge. To scale one front
panel object with the front panel, select that object and select Edit»Scale
Object with Panel.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-9 LabVIEW Introduction Course Manual

Exercise 3-1 Project: Weather Station UI VI

Goal
Create a front panel based on a given specification.

Scenario
You are given the design information for a weather station project that you
must implement. Using the information, create a front panel that will be the
user interface for the Weather Station VI.

Design

User Interface Inputs and Outputs

External Inputs and Outputs
• Current temperature—retrieved from a sensor attached to AI0 of the

data acquisition board. Conversion formula: Voltage x 100 = degrees
Celsius

• ASCII File—time, current temperature, temperature limits and warning
string for each warning that occurred; tab-delimited.

Type Name Properties

Numeric Control Upper Limit Double-Precision

Numeric Control Lower Limit Double-Precision

Waveform Chart Temperature
History

Digital Display visible

String Indicator Warning Three possible values:
Heatstroke Warning, No
Warning, and Freeze Warning

Boolean Control Stop

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-10 ni.com

State Transition Diagram
You developed a state transition diagram for the weather station in
Exercise 1-2. However, to ensure consistency with the instructions given in
this manual, a state transition diagram is shown in Figure 3-3 for you to use
on the course project from this exercise forward.

Figure 3-3. State Transition Diagram for the Course Project

Initialize

Analysis

Acquisition

Datalog

Warning=TRUE

Warning=FALSE

Time Elapsed=TRUE
and

Stop=False

Stop=TRUE

Time Elapsed=FALSE
and

Stop=FALSE

Time Check

Lesson 3 Implementing a VI

© National Instruments Corporation 3-11 LabVIEW Introduction Course Manual

Implementation
Each input entered and each output displayed must appear on the front
panel. Complete the following instructions to create a front panel similar to
that shown in Figure 3-4. This front panel retrieves the upper and lower
temperature limits and a stop Boolean and displays the warning string and
the temperature history.

Figure 3-4. Front Panel for the Temperature Weather Station Project

1. Select File»New Project to create a new project in LabVIEW to contain
the VIs associated with the temperature weather station.

2. Create a new VI for the user interface of the project.

❑ Select File»New VI.

❑ Save the VI as Weather Station UI.vi in the
C:\Exercises\LabVIEW_Basics_I\Course Project
directory.

3. Save the project.

❑ Select File»Save Project.

❑ Save the project as Weather Station.lvproj in the
C:\Exercises\LabVIEW_Basics_I\Course Project
directory.

4. Create a numeric control for the upper temperature limit.

❑ Place a numeric control on the front panel.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-12 ni.com

❑ Change the label text of the numeric control to Upper Limit.

❑ Right-click the control, select Representation, and confirm that the
representation type is set to double precision.

5. Create a numeric control for the lower temperature limit.

❑ Place a numeric control on the front panel.

❑ Change the label of the numeric control to Lower Limit.

❑ Right-click the control, select Representation, and confirm that the
representation type is set to double precision.

6. Create a waveform chart for displaying the current temperature.

❑ Place a waveform chart on the front panel.

❑ Change the label text to Temperature History.

❑ Right-click the waveform chart and select Visible Items»Digital
Display. This display shows the numeric value of the last item
charted.

Note You modify the behavior and appearance of the waveform chart in another
exercise.

7. Create a string indicator for displaying the current warning state.

❑ Place a string indicator on the front panel.

❑ Change the label text to Warning.

❑ Place the mouse cursor inside the indicator area.

❑ Use the font tools on the front panel toolbar to change the size, color
and font of the indicator.

Tip You can enter text into the Warning indicator to test the fonts that you choose.

8. Create a Stop button.

❑ Place a Stop button on the front panel.

❑ Right-click the Stop button and select Visible Items»Label, to hide
the label.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-13 LabVIEW Introduction Course Manual

❑ Increase the size of the Stop button by selecting a corner of the Stop
button with the selection tool and dragging the area to the desired
size and shape.

9. Add labels and decorations and arrange the objects on the front panel to
increase the usability. Refer to Figure 3-4 for suggestions, or design the
front panel your own way. Tips:

❑ Temperature Ranges (C) is a free label. You can create a free
label by double-clicking in an empty area of the front panel and
typing the text.

❑ The square around the temperature ranges and the triangles used to
illustrate heatstroke and freeze is available in the Decorations
category of the Controls palette.

❑ Visually group all controls together on the left side of the front
panel.

❑ Visually group all indicators together on the right side of the panel.
The Stop button is the only exception to this rule, as it is generally
placed in the lower right side of the panel.

❑ Visually group similar objects together.

❑ Use colors where appropriate on the front panel. For example, the
Stop button is usually red, heat is generally associated with red, and
cold is generally associated with blue.

10. Save the VI.

11. Close the project.

You continue to build this project in later exercises.

End of Exercise 3-1

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-14 ni.com

B. Block Diagram Terminals
When you design the front panel, the controls and indicators have
corresponding terminals on the block diagram.

Controls, Indicators and Constants
Controls, indicators, and constants behave as inputs and outputs of the block
diagram algorithm. Consider the implementation of the algorithm for the
area of a triangle:

Area = .5 * Base * Height

In this algorithm, Base and Height are inputs and Area is an output, as
shown in Figure 3-5.

Figure 3-5. Area of a Triangle Front Panel

The constant .5 does not necessarily appear on the front panel, except
possibly as documentation of the algorithm.

Figure 3-6 shows a possible implementation of this algorithm on a
LabVIEW block diagram. This block diagram has five different terminals
created by two controls, one constant, and one indicator.

Figure 3-6. Area of a Triangle Block Diagram with Icon Terminal View

1 Controls 2 Indicators 3 Constant

3 21

Lesson 3 Implementing a VI

© National Instruments Corporation 3-15 LabVIEW Introduction Course Manual

Notice that the Base (cm) and Height (cm) block diagram terminals have a
different appearance from Area (cm2). There are two distinguishing
characteristics between a control and an indicator on the block diagram. The
first is an arrow on the terminal that indicates the direction of data flow. The
controls have arrows showing the data leaving the terminal, whereas the
indicator has an arrow showing the data entering the terminal. The second
distinguishing characteristic is the border around the terminal. Controls
have a thick border, and indicators have a thin border.

Figure 3-7 shows the same block diagram without using the icon view of the
terminals; however, the same distinguishing characteristics between
controls and indicators exist.

Figure 3-7. Area of a Triangle Block Diagram without Icon Terminal View

LabVIEW Data Types
Many different data types exist for data. You already learned about numeric,
Boolean, and string data types in Lesson 2, Navigating LabVIEW. Other
data types include the enumerated data type, dynamic data, and others. Even
within numeric data types, there are different data types, such as whole
numbers or fractional numbers.

The block diagram terminals visually communicate to the user some
information about the data type they represent. For example, in Figure 3-7,
Height (cm) is a double-precision, floating-point numeric. This is indicated
by the color of the terminal, orange, and by the text shown on the terminal,
DBL.

Numeric
The numeric data type represents numbers of various types. To change the
representation type of a number, right-clicking the control, indicator, or
constant, and select Representation, as shown in Figure 3-8.

When you wire two or more numeric inputs of different representations to a
function, the function usually returns output in the larger or wider format.
The functions coerce the smaller representations to the widest

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-16 ni.com

representation before execution and LabVIEW places a coercion dot on the
terminal where the conversion takes place.

Figure 3-8. Numeric Representation

Within the numeric data type, there are the following subcategories of
representation: floating-point numbers, signed integers, unsigned integers,
and complex numbers.

Floating-Point Numbers
Floating-point numbers represent fractional numbers. In LabVIEW,
floating-point numbers are represented with the color orange.

Single-precision (SGL)—Single-precision, floating-point numbers have
32-bit IEEE single-precision format. Use single-precision, floating-point
numbers to save memory and avoid overflowing the range of the numbers.

Double-precision (DBL)—Double-precision, floating-point numbers have
64-bit IEEE double-precision format. Double-precision is the default format
for numeric objects. For most situations, use double-precision,
floating-point numbers.

Extended-precision (EXT)—In memory, the size and precision of
extended-precision numbers vary depending on the platform. In Windows,
they have 80-bit IEEE extended-precision format.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-17 LabVIEW Introduction Course Manual

Integers
Integers represent whole numbers. Signed integers can be positive or
negative. Use the unsigned integer datatypes when you know the integer is
always positive. In LabVIEW, integers are represented with the color blue.

When LabVIEW converts floating-point numbers to integers, the VI rounds
to the nearest even integer. For example, LabVIEW rounds 2.5 to 2 and
rounds 3.5 to 4.

Byte (I8)—Byte integer numbers have 8 bits of storage.

Word (I16)—Word integer numbers have 16 bits of storage.

Long (I32)—Long integer numbers have 32 bits of storage. In most cases,
it is best to use a 32-bit integer.

Quad (I64)—Quad integer numbers have 64 bits of storage.

Complex Numbers
Complex numbers are represented by two values linked together in
memory: one representing the real part and one representing the imaginary
part. In LabVIEW, since complex numbers are a type of floating-point
number, complex numbers are also represented with the color orange.

Complex Single—Complex single-precision floating-point numbers
consist of real and imaginary values in 32-bit IEEE single-precision format.

Complex Double—Complex double-precision floating-point numbers
consist of real and imaginary values in 64-bit IEEE double-precision format.

Complex Extended—Complex extended-precision floating-point numbers
consist of real and imaginary values in IEEE extended-precision format. In
memory, the size and precision of extended-precision numbers vary
depending on the platform. In Windows, they have 80-bit IEEE
extended-precision format.

Boolean Values
LabVIEW stores Boolean data as 8-bit values. If the 8-bit value is zero, the
Boolean value is FALSE. Any nonzero value represents TRUE. In
LabVIEW, the color green represents Boolean data.

Boolean values also have a mechanical action associated with them. The
two major actions are latch and switch. Latch action is similar to a doorbell,
whereas switch action is similar to a light switch. You can also define when
the switch or latch occurs: when pressed, when released or until released. To

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-18 ni.com

learn more about mechanical action, experiment with the Mechanical
Action of Booleans VI in the NI Example Finder.

Figure 3-9. Boolean Mechanical Action

String
A string is a sequence of displayable or non-displayable ASCII characters.
Strings provide a platform-independent format for information and data.
Some of the more common applications of strings include the following:

• Creating simple text messages.

• Passing numeric data as character strings to instruments and then
converting the strings to numeric values.

• Storing numeric data to disk. To store numeric data in an ASCII file, you
must first convert numeric data to strings before writing the data to a
disk file.

• Instructing or prompting the user with dialog boxes.

On the front panel, strings appear as tables, text entry boxes, and labels.
LabVIEW includes built-in VIs and functions you can use to manipulate
strings, including formatting strings, parsing strings, and other editing.

In LabVIEW, strings are represented with the color pink.

You can display strings in different ways. Normal Display is most
commonly used. ’/’ Codes Display allows you to view non-displayable
ASCII characters. Password Display allows you to display an asterisk (*),
instead of the actual character typed. Hex Display shows the hex value for
each character and is useful when debugging instrument communication.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-19 LabVIEW Introduction Course Manual

Right-click a string control or indicator on the front panel to select from the
display types shown in the following table. The table also shows an example
message in each display type.

LabVIEW stores strings as a pointer to a structure that contains a 4-byte
length value followed by a 1D array of byte integers (8-bit characters).

Enumerated Control
An enum (enumerated control, constant or indicator) is a combination of
data types. An enum represents a pair of values, a string and a numeric,
where the enum can be one of a list of values. For example, if you created
an enum type called Month, the possible value pairs for a Month variable
are January-0, February-1, and so on through December-11. Figure 3-10
shows an example of these data pairs in the Properties dialog box for an
enumerated control.

Display Type Description Message

Normal Display Displays printable characters
using the font of the control.
Non-displayable characters
generally appear as boxes.

There are four display
types.\ is a
backslash.

‘\’ Codes Display Displays backslash codes for
all non-displayable
characters.

There\sare\sfour\sdis
play\stypes.\n\\\sis\
sa\sbackslash.

Password Display Displays an asterisk (*) for
each character including
spaces.

Hex Display Displays the ASCII value of
each character in hex instead
of the character itself.

5468 6572 6520 6172
6520 666F 7572 2064
6973 706C 6179 2074
7970 6573 2E0A 5C20
6973 2061 2062 6163
6B73 6C61 7368 2E

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-20 ni.com

Figure 3-10. Properties for the Month Enumerated Control

Enums are useful because manipulating numbers on the block diagram is
easier than strings. Figure 3-11 shows the Month enumerated control on the
front panel, the selection of a data pair in the enumerated control, and the
corresponding block diagram terminal.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-21 LabVIEW Introduction Course Manual

Figure 3-11. Month Enumerated Control

Dynamic
The dynamic data type stores the information generated or acquired by an
Express VI. The dynamic data type appears as a dark blue terminal, shown
at left. Most Express VIs accept and/or return the dynamic data type.
You can wire the dynamic data type to any indicator or input that accepts
numeric, waveform, or Boolean data. Wire the dynamic data type to an
indicator that can best present the data. Indicators include graphs, charts,
or numeric indicators.

Most other VIs and functions in LabVIEW do not accept the dynamic data
type. To use a built-in VI or function to analyze or process the data the
dynamic data type includes, you must convert the dynamic data type.

Use the Convert from Dynamic Data Express VI, shown at left, to convert
the dynamic data type to numeric, Boolean, waveform, and array data types
for use with other VIs and functions. When you place the Convert from
Dynamic Data Express VI on the block diagram, the Configure Convert
from Dynamic Data dialog box appears. The Configure Convert from
Dynamic Data dialog box displays options that let you specify how you
want to format the data that the Convert from Dynamic Data Express VI
returns.

When you wire a dynamic data type to an array indicator, LabVIEW
automatically places the Convert from Dynamic Data Express VI on the
block diagram. Double-click the Convert from Dynamic Data Express VI to

1 Front Panel Control 2 Selecting an Item 3 Block Diagram Terminal

1 2 3

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-22 ni.com

open the Configure Convert from Dynamic Data dialog box to control
how the data appears in the array.

Use the Convert to Dynamic Data Express VI to convert numeric, Boolean,
waveform, and array data types to the dynamic data type for use with
Express VIs. When you place the Convert to Dynamic Data Express VI on
the block diagram, the Configure Convert to Dynamic Data dialog box
appears. Use this dialog box to select the kind of data to convert to the
dynamic data type.

C. Documenting Code
Professional developers who maintain and modify VIs know the value of
good documentation. Document the block diagram well to ease future
modification of the code. In addition, document the front panel well to
explain the purpose of the VI and the front panel objects.

Use tip strips, descriptions, VI Properties, and good design to document
front panels.

Tip Strips and Descriptions
Tip strips are explanations that appear when you mouse over a control or
indicator. For example, you might add a tip strip saying that a temperature
is in degrees Celsius or explain how the input works in an algorithm.
Descriptions provide more additional information about specific controls
and indicators. To add tip strips and descriptions to controls, right-click the
control or indicator and select Description and Tip from the shortcut menu.

VI Properties
Use the Documentation component of the VI Properties dialog box to
create VI descriptions and to link from VIs to HTML files or to compiled
help files. To display VI Properties right-click the VI icon on the front panel
or block diagram and select VI Properties from the shortcut menu or select
File»VI Properties. Then select Documentation from the Categories
drop-down menu. You cannot access this dialog box while a VI runs.

This page includes the following components:

• VI description—Contains the text that appears in the Context Help
window if you move the cursor over the VI icon. Use and tags
around any text in the description you want to format as bold. You also
can use the VI Description property to edit the VI description
programmatically.

• Help tag—Contains the HTML filename or index keyword of the topic
you want to link to in a compiled help file. You also can use the
Help:Document Tag property to set the help tag programmatically.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-23 LabVIEW Introduction Course Manual

• Help path—Contains the path to the HTML file or to the compiled help
file you want to link to from the Context Help window. If this field is
empty, the blue Click here for more help. link does not appear in the
Context Help window, and the More Help button is dimmed. You also
can use the Help:Document Path property to set the help path
programmatically.

• Browse—Displays a file dialog box to use to navigate to an HTML file
or to a compiled help file to use as the Help path.

Naming Controls and Indicators
Giving controls and indicators logical and descriptive names adds usability
to front panels. For example, if you name a control Temperature, a user may
not know which units to use. However, naming a control Temperature °C
adds more information to the front panel. You now know to enter
temperatures in metric units.

Graphical Programming
While the graphical nature of LabVIEW aids in self-documentation of block
diagrams, extra comments are helpful when modifying your VIs in the
future. There are two types of block diagram comments—comments that
describe the function or operation of algorithms and comments that explain
the purpose of data that passes through wires. Both types of comments are
shown in the following block diagram. You can insert standard labels either
with the Labeling tool, or by inserting a free label from the Functions»All
Functions»Decorations subpalette. By default, free labels have a yellow
background color.

Figure 3-12. Documenting a Block Diagram

Use the following guidelines for commenting your VIs:

• Use comments on the block diagram to explain what the code is doing.

• While LabVIEW code can be self-documenting because it is graphical,
use free labels to describe how the block diagram functions.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-24 ni.com

• Do not show labels on function and subVI calls because they tend to be
large and unwieldy. A developer looking at the block diagram can find
the name of a function or subVI by using the Context Help window.

• Use small free labels with white backgrounds to label long wires to
identify their use. Labeling wires is useful for wires coming from shift
registers and for long wires that span the entire block diagram.Refer to
the Case Structures section of this lesson for more information about
shift registers.

• Label structures to specify the main functionality of the structure.

• Label constants to specify the nature of the constant.

• Use free labels to document algorithms that you use on the block
diagrams. If you use an algorithm from a book or other reference,
provide the reference information.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-25 LabVIEW Introduction Course Manual

Exercise 3-2 Project: Determine Warnings VI

Goal
Create and document a simple VI.

Scenario
You must create a portion of a larger project. The lead developer gives you
the inputs of the VI, the algorithm and the expected outputs. Build and
document a VI based on the design given.

Design

Inputs and Outputs

Type Name Properties

Numeric Control Current Temp Double-Precision

Numeric Control Max Temp Double-Precision

Numeric Control Min Temp Double-Precision

String Indicator Warning Text Three potential values:
Heatstroke Warning, No
Warning, and Freeze Warning

Round LED Warning?

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-26 ni.com

Flowchart

Figure 3-13. Determine Warnings VI Front Panel

Current Temp
>=Max Temp?

Yes

No

Warning Text =
Heatstroke
Warning

Yes

Current Temp
<= Min Temp?

Warning Text =
Freeze Warning

Pass current value
of Warning Text

No

Warning Text =
No Warning

Warning
Text = No
Warning?

Warning ? = TrueWarning ? = False

Yes

No

Lesson 3 Implementing a VI

© National Instruments Corporation 3-27 LabVIEW Introduction Course Manual

Implementation
Follow the instructions given below to create a front panel similar to
Figure 3-14. This front panel retrieves from the user the current
temperature, the maximum temperature, and the minimum temperature, and
displays to the user the warning string and the warning Boolean LED. This
VI is part of the temperature weather station project you created in the
previous exercise.

Figure 3-14. Determine Warnings VI Front Panel

1. Add a new VI to the temperature weather station project you created in
the previous exercise.

❑ Select File»Open Project.

❑ Open the Weather Station.lvproj in the
C:\Exercises\LabVIEW_Basics_I\Course Project
directory.

❑ Select File»New VI.

2. Save the new VI.

❑ Select File»Save.

❑ Save the VI as Determine Warnings.vi in the
C:\Exercises\LabVIEW_Basics_I\Course Project
directory.

3. Create a numeric control for the current temperature.

❑ Place a Numeric Control on the front panel.

❑ Change the label of the numeric control to Current Temp.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-28 ni.com

❑ Right-click the control, select Representation, and confirm that the
representation type is set to double precision.

Tip This subVI could be used for Fahrenheit, Kelvin, or any temperature scale, as long
as all inputs use the same scale. Therefore, it is not necessary to add scale units to the
labels.

4. Create a numeric control for the maximum temperature.

❑ Hold down the <Ctrl> key and click and drag the Current Temp
numeric control to create a copy of the control.

❑ Change the label text of the new numeric control to Max Temp.

5. Create a numeric control for the minimum temperature.

❑ Hold down the <Ctrl> key and click and drag the Max Temp
numeric control to create a copy of the control.

❑ Change the label text of the new numeric control to Min Temp.

6. Create a string indicator for the warning text.

❑ Place a string indicator on the front panel.

❑ Change the label text of the string indicator to Warning Text.

7. Create a Round LED or other Boolean indicator for the warning
Boolean.

❑ Place a Round LED on the front panel.

❑ Change the label text of the Boolean indicator to Warning?.

8. Switch to the block diagram.

Tip If you do not want to use the Icon Terminal view on the block diagram, select
Tools»Options, then select Block Diagram from the Category list. Remove the
checkmark from the Place front panel terminals as icons item.

Follow the instructions given below to build a block diagram similar to the
one shown in Figure 3-15.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-29 LabVIEW Introduction Course Manual

Figure 3-15. Determine Warnings VI Block Diagram

9. Compare Current Temp and Max Temp.

❑ Place a Greater Or Equal? function on the block diagram.

❑ Wire the Current Temp terminal to the x input terminal of the
Greater Or Equal? function.

❑ Wire the Max Temp terminal to the y input terminal of the Greater
Or Equal? function.

10. Compare Current Temp and Min Temp.

❑ Place a Less Or Equal? function on the block diagram.

❑ Wire the Current Temp terminal to the x input terminal of the Less
Or Equal? function.

❑ Wire the Min Temp terminal to the y input terminal of the Less Or
Equal? function.

11. If the Current Temp is equal to or greater than the Max Temp, generate
a Heatstroke Warning string, otherwise generate a No Warning
string.

❑ Place the Select function on the block diagram to the right of the
Greater Or Equal? function.

❑ Wire the output of the Greater Or Equal? function to the s input
terminal of the Select function.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-30 ni.com

❑ Place a string constant on the block diagram to the upper left of the
Select function.

❑ Enter Heatstroke Warning in the string constant.

❑ Wire the Heatstroke Warning string to the t input of the Select
function.

❑ Hold down the <Ctrl> key and click and drag the Heatstroke
Warning string constant to the lower left of the Select function to
create a copy of the constant.

❑ Enter No Warning in the second string constant.

❑ Wire the No Warning string to the f input of the Select function.

12. If the Current Temp is equal to or less than the Min Temp, generate a
Freeze Warning string, else use the string generated in Step 11.

❑ Create a copy of the Select function and place it to the right of the
Less Or Equal?.

❑ Wire the output terminal of the Less Or Equal? function to the s
input terminal of the Select function.

❑ Create a copy of the string constant and place it to the upper right of
the Select function.

❑ Enter Freeze Warning in the string constant.

❑ Wire the Freeze Warning string to the t input terminal of the
Select function.

❑ Wire the output of the previous Select function to the f input
terminal of the new Select function.

13. Display the generated text.

❑ Wire the output of the second Select function to the Warning Text
indicator.

14. Generate the Warning? Boolean by determining if the value of Warning
Text is equal to No Warning.

❑ Place a Not Equal function to the left of the Warning? Boolean.

❑ Wire the output of the second Select function to the x input terminal
of the Not Equal function.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-31 LabVIEW Introduction Course Manual

❑ Wire the No Warning string constant to the y input terminal of the
Not Equal function.

❑ Wire the output of the Not Equal function to the Warning? Boolean.

15. Document the code using the following suggestions on the front panel.

❑ Create tip strips for each control and indicator stating the purpose of
the object and the units used. To access tip strips, right-click a
control, and select Description and Tip.

❑ Document the VI Properties giving a general description of the VI,
a list of inputs and outputs, your name and the date the VI was
created. To access VI Properties, select File»VI Properties.

❑ Document the block diagram algorithm with a free label.

16. Save the VI.

Testing
1. Test the VI by inputting a value for Current Temp, Max Temp, and Min

Temp, and running for each set.

Table 3-1 shows the expected Warning Text string and Warning?
Boolean for each set of input values.

What happens if you input a Max Temp value that is less than the Min
Temp? What would you expect to happen? You learn to handle errors
like this one in a Exercise 3-7.

2. Save and close the VI.

3. Save and close the project.

End of Exercise 3-2

Table 3-1. Testing Values for Determine Warnings.vi

Current Temp Max Temp Min Temp Warning Text Warning?

30 30 10 Heatstroke
Warning

 True

25 30 10 No Warning False

10 30 10 Freeze Warning True

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-32 ni.com

D. While Loops
Similar to a Do Loop or a Repeat-Until Loop in text-based programming
languages, a While Loop, shown as follows, executes a subdiagram until a
condition occurs.

The following illustration shows a While Loop in LabVIEW, a flowchart
equivalent of the While Loop functionality, and a pseudo code example of
the functionality of the While Loop.

Figure 3-16. While Loop

The While Loop is located on the Structures palette. Select the While Loop
from the palette then use the cursor to drag a selection rectangle around the
section of the block diagram you want to repeat. When you release the
mouse button, a While Loop boundary encloses the section you selected.

Add block diagram objects to the While Loop by dragging and dropping
them inside the While Loop.

Tip The While Loop always executes at least once.

The While Loop executes the subdiagram until the conditional terminal, an
input terminal, receives a specific Boolean value. The default behavior and
appearance of the conditional terminal is Stop if True, shown as follows.

When a conditional terminal is Stop if True, the While Loop executes its
subdiagram until the conditional terminal receives a TRUE value. You can
change the behavior and appearance of the conditional terminal by
right-clicking the terminal or the border of the While Loop and selecting
Continue if True, shown as follows, from the shortcut menu.

1 LabVIEW While Loop 2 Flowchart 3 Pseudo Code

Code

End

Repeat (code);

Until Condition met;

End;

Code

1 2 3

Condition
met?

Yes

No

Lesson 3 Implementing a VI

© National Instruments Corporation 3-33 LabVIEW Introduction Course Manual

When a conditional terminal is Continue if True, the While Loop executes
its subdiagram until the conditional terminal receives a FALSE value. You
also can use the Operating tool to click the conditional terminal to change
the condition.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

In the following block diagram, the While Loop executes until the subVI
output is greater than or equal to 10.00 and the Enable control is True.
The And function returns True only if both inputs are True. Otherwise,
it returns False.

In the following example, there is an increased probability of an infinite
loop. Generally, the desired behavior is to have one condition met to stop
the loop, rather than requiring both conditions to be met.

Figure 3-17. Possible Infinite Loop

Structure Tunnels
Tunnels feed data into and out of structures. The tunnel appears as a solid
block on the border of the While Loop. The block is the color of the data
type wired to the tunnel. Data pass out of a loop after the loop terminates.
When a tunnel passes data into a loop, the loop executes only after data
arrive at the tunnel.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-34 ni.com

In the following block diagram, the iteration terminal is connected to a
tunnel. The value in the tunnel does not get passed to the Iterations
indicator until the While Loop finishes executing.

Figure 3-18. While Loop Tunnel

Only the last value of the iteration terminal displays in the Iterations
indicator.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-35 LabVIEW Introduction Course Manual

Exercise 3-3 Auto Match VI

Goal
Use a While Loop and an iteration terminal and pass data through a tunnel.

Scenario
Build a VI that continuously generates random numbers between 0 and 1000
until it generates a number that matches a number selected by the user.
Determine how many random numbers the VI generated before the
matching number.

Design

Table 3-2. Inputs and Outputs

Type Name Properties

Input Number to Match Floating Point Double
between 0 and 1000
coerce to nearest whole number
default value = 50

Output Current Number Floating Point Double

Output Number of Iterations Integer

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-36 ni.com

Flowchart

Figure 3-19. Auto Match Flowchart

Generate a
random number
between 0 and 1

Multiply by 1000

Rount to nearest
integer value

= Number to
Match?

Display value to
user

No

Add 1 to iteration
terminal

Display Number of
Iterations

Yes

Lesson 3 Implementing a VI

© National Instruments Corporation 3-37 LabVIEW Introduction Course Manual

Implementation
Open a blank VI and build the following front panel. Modify the controls
and indicators as shown in the following front panel and as described in the
following steps.

1. Create the Number to Match input.

❑ Place a numeric control on the front panel.

❑ Label the control Number to Match.

2. Set the properties for the Number to Match control so that the default
value is 50, the data range is from 0 to 1000, the increment value is 1,
and the digits of precision is 1.

❑ Right-click the Number to Match control and select Data Range
from the shortcut menu. The Data Range page of the Numeric
Properties dialog box appears.

❑ Remove the checkmark from the Use Default Range checkbox.

❑ Set the Default Value to 50.

❑ Set the Minimum value to 0 and select Coerce from the Out of
Range Action pull-down menu.

❑ Set the Maximum value to 1000 and select Coerce from the Out of
Range Action pull-down menu.

❑ Set the Increment value to 1 and select Coerce to Nearest from the
Out of Range Action pull-down menu.

❑ Select the Format and Precision tab.

❑ Select Floating Point and change Precision Type from Significant
digits to Digits of precision.

❑ Enter 0 in the Digits text box and click the OK button.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-38 ni.com

3. Create the Current Number output.

❑ Place a numeric indicator on the front panel.

❑ Label the indicator Current Number.

4. Set the digits of precision for the Current Number output to 0.

❑ Right-click the Current Number indicator and select Format &
Precision from the shortcut menu. The Format & Precision page
of the Numeric Properties dialog box appears.

❑ Select Floating Point and change Precision Type from Significant
digits to Digits of precision.

❑ Enter 0 in the Digits text box and click the OK button.

5. Create the # of iterations output.

❑ Place a numeric indicator on the front panel.

❑ Label the indicator # of iterations.

6. Set the representation for the # of iterations output to a long integer.

❑ Right-click the # of iterations indicator.

❑ Select Representation»I32 from the shortcut menu.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-39 LabVIEW Introduction Course Manual

Build the following block diagram.

7. Generate a random number integer between 0 and 1000.

❑ Select the Random Number (0-1) function and place it on the block
diagram. The Random Number (0-1) generates a random number
between 0 and 1.

❑ Select the Multiply function and place it on the block diagram. The
Multiply function multiplies the random number by y to produce
a random number between 0 and y.

❑ Right-click the y input of the Multiply function, select Create»
Constant from the shortcut menu, enter 1000, and press the
<Enter> key to create a numeric constant.

❑ Place the Round To Nearest function on the block diagram. This
function rounds the random number to the nearest integer.

8. Compare the randomly generated number to the value in the Number to
Match control.

❑ Place the Not Equal? function on the block diagram. This function
compares the random number with Number to Match and returns
True if the numbers are not equal; otherwise, it returns False.

9. Repeat the algorithm until the Not Equal? function returns True.

❑ Place a While Loop from the Structures palette on the block
diagram.

❑ Right-click the conditional terminal and select Continue if True
from the shortcut menu.

10. Display the number of random numbers generated to the user by adding
one to the iteration terminal value.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-40 ni.com

❑ Wire the iteration terminal to the border of the While Loop. A blue
tunnel appears on the While Loop border.

Tip Each time the loop executes, the iteration terminal increments by one. Wire the
iteration value to the Increment function because the iteration count starts at 0. The
iteration count passes out of the loop upon completion.

❑ Place the Increment function on the block diagram. This function
adds 1 to the While Loop count.

11. Save the VI as Auto Match.vi in the C:\Exercises\LabVIEW
Basics I/Automatch directory.

Testing
1. Display the front panel.

2. Change the number in Number to Match to a number that is in the data
range, which is 0 to 1000 with an increment of 1.

3. Run the VI.

4. Change Number to Match and run the VI again. Current Number
updates at every iteration of the loop because it is inside the loop. # of
iterations updates upon completion because it is outside the loop.

5. To see how the VI updates the indicators, enable execution highlighting.

❑ On the block diagram toolbar, click the Highlight Execution
button, shown at left, to enable execution highlighting. Execution
highlighting shows the movement of data on the block diagram from
one node to another so you can see each number as the VI generates
it.

6. Run the VI and observe the dataflow.

7. Try to match a number that is outside of the data range.

8. Change Number to Match to a number that is out of the data range.

❑ Run the VI. LabVIEW coerces the out-of-range value to the nearest
value in the specified data range.

9. Close the VI.

End of Exercise 3-3

Lesson 3 Implementing a VI

© National Instruments Corporation 3-41 LabVIEW Introduction Course Manual

E. For Loops

A For Loop, shown as follows, executes a subdiagram a set number of
times.The following illustration shows a For Loop in LabVIEW, a flowchart
equivalent of the For Loop functionality, and a pseudo code example of the
functionality of the For Loop.

Figure 3-20. For Loop

The For Loop is located on the Functions»All Functions»Structures
palette. You also can place a While Loop on the block diagram, right-click
the border of the While Loop, and select Replace with For Loop from the
shortcut menu to change a While Loop to a For Loop. The value in the count
terminal (an input terminal), shown as follows, indicates how many times to
repeat the subdiagram.

The iteration terminal (an output terminal), shown as follows, contains the
number of completed iterations.

The iteration count always starts at zero. During the first iteration, the
iteration terminal returns 0.

The For Loop differs from the While Loop in that the For Loop executes a
set number of times. A While Loop stops executing the subdiagram only if
the value at the conditional terminal exists.

The following For Loop generates a random number every second for
100 seconds and displays the random numbers in a numeric indicator.

1 LabVIEW For Loop 2 Flowchart 3 Pseudo Code

N=100

i=0

i=i+1

Code

End

i=N?

N=100;

i=0;

Until i=N:

 Repeat (code; i=i+1);

End;

Code

1 2 3

No

Yes

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-42 ni.com

Figure 3-21. For Loop Example

Numeric Conversion
LabVIEW can represent numeric data types as signed or unsigned integers,
floating-point numeric values, or complex numeric values, as discussed in
the LabVIEW Data Types section of this lesson. Normally, when you wire
different representation types to the inputs of a function, the function returns
an output in the larger or wider format. LabVIEW chooses the
representation that uses more bits. If the number of bits is the same,
LabVIEW chooses unsigned over signed. For example, if you wire a DBL
and an I32 to a Multiply function, the result is a DBL, as shown in
Figure 3-22. The 64-bit signed integer is coerced because it uses fewer bits
than the double-precision, floating-point numeric value. The lower input of
the Multiply function shows a grey dot, called a coercion dot, that indicates
a numeric coercion occurred.

Figure 3-22. Numeric Conversion Example

However, the For Loop count terminal works in the opposite manner. If you
wire a double-precision, floating-point numeric value to the 64-bit count
terminal, LabVIEW converts the larger numeric value to a 32-bit signed
integer. Although the conversion is contrary to normal conversion
standards, it is necessary, as a For Loop can only execute an integer number
of times.

1 Coercion Dot

1

Lesson 3 Implementing a VI

© National Instruments Corporation 3-43 LabVIEW Introduction Course Manual

Figure 3-23. Coercion on a For Loop

1 Coercion Dot

1

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-44 ni.com

Exercise 3-4 Concept: While Loops versus For Loops

Goal
Understand when to use a While Loop and when to use a For Loop.

Description
For the following scenarios, decide whether to use a While Loop or a For
Loop.

Scenario 1
Acquire a pressure every second for one minute.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Scenario 2
Acquire a pressure until the pressure is 1400 psi.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Scenario 3
Acquire a pressure and a temperature until both values are stable for two
minutes.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Lesson 3 Implementing a VI

© National Instruments Corporation 3-45 LabVIEW Introduction Course Manual

Scenario 4
Output a voltage ramp starting at zero, increasing incremental by 0.5 V
every second, until the output voltage is equal to 5 V.

1. If you use a While Loop, what is the condition that you need to stop the
loop?

2. If you use a For Loop, how many iterations does the loop need to run?

3. Is it easier to implement a For Loop or a While Loop?

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-46 ni.com

Answers

Scenario 1
Acquire a pressure every second for one minute.

1. While Loop: Time = 1 minute

2. For Loop: 60 iterations

3. Both are possible.

Scenario 2
Acquire a pressure until the pressure is 1400 psi.

1. While Loop: Pressure = 1400 psi

2. For Loop: unknown

3. A While Loop. Without more information, a For Loop is impossible.

Scenario 3
Acquire a pressure and a temperature until both values are stable for two
minutes.

1. While Loop: [(Last Temperature = Previous Temperature) for 2 minutes
or more] AND [(Last Pressure = Previous Pressure) for 2 minutes or
more]

2. For Loop: unknown

3. A While Loop. Without more information, a For Loop is impossible.

Scenario 4
Output a voltage ramp starting at zero, increasing incremental by 0.5 V
every second, until the output voltage is equal to 5 V.

1. While Loop: Voltage = 5 V

2. For Loop: 11 iterations

3. Either one is a good choice.

End of Exercise 3-4

Lesson 3 Implementing a VI

© National Instruments Corporation 3-47 LabVIEW Introduction Course Manual

F. Timing a VI
When a loop finishes executing an iteration, it immediately begins
executing the next iteration, unless it reaches a stop condition. Most often,
you need to control the frequency or timing of the iteration. For example, if
you are acquiring data, and you want to acquire the data once every 10
seconds, you need a way to time the loop iterations so they occur once every
10 seconds.

Even if you do not need the execution to occur at a certain frequency, you
need to provide the processor with time to complete other tasks, such as
processing the user interface. This section introduces some methods for
timing your loops.

Wait Functions
Place a wait function are placed inside a loop to allow a VI to sleep for a set
amount of time. This allows your processor to address other tasks during the
wait time. Wait functions use the operating system millisecond clock.

The Wait Until Next ms Multiple function, shown at left, monitors a
millisecond counter and waits until the millisecond counter reaches a
multiple of the amount you specify. Use this function to synchronize
activities. Place this function in a loop to control the loop execution rate. For
this function to be effective, your code execution time must be less than the
time specified for this function. The execution rate for the first iteration of
the loop is indeterminate.

The Wait (ms) function, shown at left, waits until the millisecond counter
counts to an amount equal to the input you specify. This function guarantees
that the loop execution rate is at least the amount of the input you specify.

Note The Time Delay Express VI behaves similar to the Wait (ms) function with the
addition of built-in error clusters. Refer to Lesson 4, Implementing a VI for more
information about error clusters.

Elapsed Time
In some cases, it is useful to determine how much time elapses after some
point in your VI. The Elapsed Time Express VI, shown at left, indicates the
amount of time that elapses after the specified start time. This VI allows you
to keep track of time while the VI continues to execute. This function does
not provide the processor with time to complete other tasks. You learn more
about this Express VI, as you use it in the Weather Station course project.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-48 ni.com

G. Iterative Data Transfer
When programming with loops, you often must access data from previous
iterations of the loop. For example, if you are acquiring one piece of data in
each iteration of a loop and must average every five pieces of data, you must
remember the data from previous iterations of the loop. Shift registers
transfer values from one loop iteration to the next.

Note Feedback Nodes are another method used in LabVIEW for retaining information
from a previous iteration. Refer to the Feedback Node topic in the LabVIEW Help for
more information about feedback nodes.

Shift registers are similar to static variables in text-based programming
languages.

Use shift registers when you want to pass values from previous iterations
through the loop to the next iteration. A shift register appears as a pair of
terminals, shown as follows, directly opposite each other on the vertical
sides of the loop border.

The terminal on the right side of the loop contains an up arrow and stores
data on the completion of an iteration. LabVIEW transfers the data
connected to the right side of the register to the next iteration. After the loop
executes, the terminal on the right side of the loop returns the last value
stored in the shift register.

Create a shift register by right-clicking the left or right border of a loop and
selecting Add Shift Register from the shortcut menu.

A shift register transfers any data type and automatically changes to the data
type of the first object wired to the shift register. The data you wire to the
terminals of each shift register must be the same type.

You can add more than one shift register to a loop. If you have multiple
operations that use previous iteration values within your loop, use multiple
shift registers to store the data values from those different processes in the
structure, as shown in the following figure.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-49 LabVIEW Introduction Course Manual

Initializing Shift Registers
Initializing a shift register resets the value the shift register passes to the first
iteration of the loop when the VI runs. Initialize a shift register by wiring a
control or constant to the shift register terminal on the left side of the loop,
as shown in the following figure.

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. After five iterations of the
For Loop, the shift register passes the final value, 5, to the indicator and the
VI quits. Each time you run the VI, the shift register begins with a value
of 0.

If you do not initialize the shift register, the loop uses the value written to
the shift register when the loop last executed or the default value for the data
type if the loop has never executed.

Use an uninitialized shift register to preserve state information between
subsequent executions of a VI. The following figure shows an uninitialized
shift register.

In the previous figure, the For Loop executes five times, incrementing the
value the shift register carries by one each time. The first time you run the

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-50 ni.com

VI, the shift register begins with a value of 0, which is the default value for
a 32-bit integer. After five iterations of the For Loop, the shift register
passes the final value, 5, to the indicator, and the VI quits. The next time you
run the VI, the shift register begins with a value of 5, which was the last
value from the previous execution. After five iterations of the For Loop, the
shift register passes the final value, 10, to the indicator. If you run the VI
again, the shift register begins with a value of 10, and so on. Uninitialized
shift registers retain the value of the previous iteration until you close the
VI.

Stacked Shift Registers
Stacked shift registers let you access data from previous loop iterations.
Stacked shift registers remember values from multiple previous iterations
and carry those values to the next iterations. To create a stacked shift
register, right-click the left terminal and select Add Element from the
shortcut menu.

Stacked shift registers can occur only on the left side of the loop because the
right terminal transfers the data generated only from the current iteration to
the next iteration, as shown in the following figure.

If you add another element to the left terminal in the previous figure, values
from the last two iterations carry over to the next iteration, with the most
recent iteration value stored in the top shift register. The bottom terminal
stores the data passed to it from the previous iteration.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-51 LabVIEW Introduction Course Manual

Exercise 3-5 Average Temperature VI

Goal
Use a For Loop and shift registers to average data.

Scenario
The Temperature Monitor VI acquires and displays temperature. Modify the
VI to average the last three temperature measurements and display the
running average on the waveform chart.

Design
Figure 3-24 and Figure 3-25 shows the Temperature Monitor VI front panel
and block diagram.

Figure 3-24. Temperature Monitor VI Front Panel

Figure 3-25. Temperature Monitor VI Block Diagram

To modify this VI, you need to retain the temperature values from the
previous two iterations, and average the values. Use a shift register with an
additional element to retain data from the previous two iterations. Initialize
the shift register with a reading from the temperature sensor. Chart only the
average temperature.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-52 ni.com

Implementation
1. Test the VI.

Hardware

❑ Open the Temperature Monitor.vi in the C:\Exercises\
LabVIEW Basics I\Average Temperature directory.

❑ Select File»Save As and save the VI as Average
Temperature.vi in the C:\Exercises\LabVIEW Basics I\
Average Temperature directory.

❑ On the DAQ Signal Accessory, flip the temperature sensor noise
switch to On. This switch introduces noise to the temperature
reading.

❑ Run the VI.

❑ Place your finger on the temperature sensor of the DAQ Signal
Accessory to increase the temperature reading. You can quickly
more your finger across the sensor to increase the reading even move
through friction. Notice the number of spikes in the reading.

❑ Skip to step 2.

No Hardware

❑ Open Temperature Monitor (Demo).vi in the
C:\Exercises\LabVIEW Basics I\Average Temperature
directory.

❑ Select File»Save As and rename the VI Average
Temperature.vi in the C:\Exercises\LabVIEW Basics I\
Average Temperature directory.

❑ Run the VI. Notice the variation in the simulated temperature
reading.

2. Stop the VI by changing the state of the Power switch. Notice that the
Power switch immediately switches back to the On state. The
mechanical action of the switch controls this behavior.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-53 LabVIEW Introduction Course Manual

In the following steps, modify the VI to reduce the number of temperature
spikes.

3. Display the block diagram.

4. Modify the block diagram as shown in Figure 3-26.

Figure 3-26. Average Temperature VI Block Diagram

❑ Right-click the right or left border of the While Loop and select
Add Shift Register from the shortcut menu to create a shift register.

❑ Right-click the left terminal of the shift register and select Add
Element from the shortcut menu to add an element to the shift
register.

❑ Press the <Ctrl> key while you click the Thermometer VI and drag
it outside the While Loop to create a copy of the subVI.

The Thermometer VI returns one temperature measurement from
the temperature sensor and initializes the left shift registers before
the loop starts.

❑ Place the Compound Arithmetic function on the block diagram.

Configure this function to return the sum of the current temperature
and the two previous temperature readings.

❑ Use the Positioning tool to resize the Compound Arithmetic
function to have three left terminals.

❑ Place the Divide function on the block diagram. This function
returns the average of the last three temperature readings.

❑ Wire the functions together as shown in Figure 3-26.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-54 ni.com

❑ Right-click the y terminal of the Divide function, select Create»
Constant.

❑ Enter 3 and press the <Enter> key.

5. Save the VI.

Testing
1. Run the VI.

2. Place your finger of the temperature sensor on the DAQ Signal
Accessory to increase the temperature reading.

During each iteration of the While Loop, the Thermometer VI takes
one temperature measurement. The VI adds this value to the last two
measurements stored in the left terminals of the shift register. The VI
divides the result by three to find the average of the three measurements,
the current measurement plus the previous two. The VI displays the
average on the waveform chart. Notice that the VI initializes the shift
register with a temperature measurement.

3. Stop the VI by changing the state of the Power switch.

4. Close the VI.

End of Exercise 3-5

Lesson 3 Implementing a VI

© National Instruments Corporation 3-55 LabVIEW Introduction Course Manual

H. Plotting Data
You already used charts and graphs to plot simple data. This section
explains more about using and customizing charts and graphs.

Waveform Charts
The waveform chart is a special type of numeric indicator that displays one
or more plots of data typically acquired at a constant rate. Waveform charts
can display single or multiple plots. Figure 3-27 shows the elements of a
multiplot waveform chart. Two plots are displayed: Raw Data and Running
Avg.

Figure 3-27. Waveform Charts

You can configure how the chart updates to display new data. Right-click
the chart and select Advanced»Update Mode from the shortcut menu to set
the chart update mode. The chart uses the following modes to display data:

• Strip Chart—Shows running data continuously scrolling from left to
right across the chart with old data on the left and new data on the right.
A strip chart is similar to a paper tape strip chart recorder. Strip Chart
is the default update mode.

• Scope Chart—Shows one item of data, such as a pulse or wave,
scrolling partway across the chart from left to right. For each new value,
the chart plots the value to the right of the last value. When the plot
reaches the right border of the plotting area, LabVIEW erases the plot

1 Label
2 Y-scale

3 X-scale
4 Scale Legend

5 Graph Palette
6 Plot Legend

1

2

4

3

5

6

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-56 ni.com

and begins plotting again from the left border. The retracing display of
a scope chart is similar to an oscilloscope.

• Sweep Chart—Works similarly to a scope chart except it shows the old
data on the right and the new data on the left separated by a vertical line.
LabVIEW does not erase the plot in a sweep chart when the plot reaches
the right border of the plotting area. A sweep chart is similar to an EKG
display.

Figure 3-28 shows an example of each chart update mode. The scope chart
and sweep chart have retracing displays similar to an oscilloscope. Because
retracing a plot requires less overhead, the scope chart and the sweep chart
display plots significantly faster than the strip chart.

Figure 3-28. Chart Update Modes

Wiring Charts
You can wire a scalar output directly to a waveform chart. The waveform
chart terminal shown in Figure 3-29 matches the input data type.

Figure 3-29. Wiring a Single Plot to a Waveform Chart

Waveform charts can display multiple plots together using the Bundle
function located on the Cluster palette. In Figure 3-30, the Bundle function
bundles the outputs of the three VIs to plot on the waveform chart.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-57 LabVIEW Introduction Course Manual

Figure 3-30. Wiring multiple plots to a Waveform Chart

The waveform chart terminal changes to match the output of the Bundle
function. To add more plots, use the Positioning tool to resize the Bundle
function. Refer to Lesson 4, Relating Data for more information about
bundles.

Waveform Graphs

VIs with a graph usually collect the data in an array and then plot the data
to the graph.Figure 3-31 shows the elements of a graph.

Figure 3-31. Waveform Graph

The graphs located on the Graph Indicators palette include the waveform
graph and XY graph. The waveform graph plots only single-valued
functions, as in y = f(x), with points evenly distributed along the x-axis,

1 Plot Legend 4 Mini-Grid Mark 7 Cursor Legend 10 Y-Scale

2 Cursor 5 Graph Palette 8 Scale Legend 11 Label

3 Grid Mark 6 Cursor Mover 9 X-Scale

10

11

9

1

3

4

8

5

7

6

2

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-58 ni.com

such as acquired time-varying waveforms. XY graphs display any set of
points, evenly sampled or not.

Resize the plot legend to display multiple plots. Use multiple plots to save
space on the front panel and to make comparisons between plots. XY and
waveform graphs automatically adapt to multiple plots.

Single Plot Waveform Graphs
The waveform graph accepts several data types for single-plot waveform
graphs. The graph accepts a single array of values, interprets the data as
points on the graph, and increments the x index by one starting at x = 0. The
graph accepts a cluster of an initial x value, a delta x, and an array of y data.
The graph also accepts the waveform data type, which carries the data, start
time, and delta t of a waveform.

 Refer to the Waveform Graph VI in the labview\examples\general\
graphs\gengraph.llb for examples of the data types that a waveform
graph accepts.

Multiplot Waveform Graphs
The waveform graph accepts several data types for displaying multiple
plots. The waveform graph accepts a 2D array of values, where each row of
the array is a single plot. The graph interprets the data as points on the graph
and increments the x index by one, starting at x = 0. Wire a 2D array data
type to the graph, right-click the graph, and select Transpose Array from
the shortcut menu to handle each column of the array as a plot. This is
particularly useful when you sample multiple channels from a DAQ device
because the device can return the data as 2D arrays with each channel stored
as a separate column.

Refer to the (Y) Multi Plot 1 graph in the Waveform Graph VI in the
labview\examples\general\graphs\gengraph.llb for an
example of a graph that accepts this data type.

The waveform graph also accepts a cluster of an initial x value, a delta x
value, and a 2D array of y data. The graph interprets the y data as points on
the graph and increments the x index by delta x, starting at the initial x value.
This data type is useful for displaying multiple signals that are sampled at
the same regular rate. Refer to the (Xo = 10, dX = 2, Y) Multi Plot 2 graph
in the Waveform Graph VI in the
labview\examples\general\graphs\gengraph.llb for an
example of a graph that accepts this data type.

The waveform graph accepts a plot array where the array contains clusters.
Each cluster contains a 1D array that contains the y data. The inner array

Lesson 3 Implementing a VI

© National Instruments Corporation 3-59 LabVIEW Introduction Course Manual

describes the points in a plot, and the outer array has one cluster for each
plot. The following front panel shows this array of the y cluster.

Use a plot array instead of a 2D array if the number of elements in each plot
is different. For example, when you sample data from several channels using
different time amounts from each channel, use this data structure instead of
a 2D array because each row of a 2D array must have the same number of
elements. The number of elements in the interior arrays of an array of
clusters can vary. Refer to the (Y) Multi Plot 2 graph in the Waveform Graph
VI in the labview\examples\general\graphs\gengraph.llb for
an example of a graph that accepts this data type.

The waveform graph accepts a cluster of an initial x value, a delta x value,
and array that contains clusters. Each cluster contains a 1D array that
contains the y data. You use the Bundle function to bundle the arrays into
clusters and you use the Build Array function to build the resulting clusters
into an array. You also can use the Build Cluster Array function, which
creates arrays of clusters that contain the inputs you specify. Refer to the
(Xo = 10, dX = 2, Y) Multi Plot 3 graph in the Waveform Graph VI in the
labview\examples\general\graphs\gengraph.llb for an
example of a graph that accepts this data type.

The waveform graph accepts an array of clusters of an x value, a delta x
value, and an array of y data. This is the most general of the multiple-plot
waveform graph data types because you can indicate a unique starting point
and increment for the x-scale of each plot. Refer to the (Xo = 10, dX = 2, Y)
Multi Plot 1 graph in the Waveform Graph VI in the labview\examples\
general\graphs\gengraph.llb for an example of a graph that accepts
this data type.

The waveform graph also accepts the dynamic data type, which is for use
with Express VIs. In addition to the data associated with a signal, the
dynamic data type includes attributes that provide information about the
signal, such as the name of the signal or the date and time the data was
acquired. Attributes specify how the signal appears on the waveform graph.
When the dynamic data type includes multiple channels, the graph displays
a plot for each channel and automatically formats the plot legend and
x-scale time stamp.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-60 ni.com

Single Plot XY Graphs
The XY graph accepts three data types for single-plot XY graphs. The XY
graph accepts a cluster that contains an x array and a y array. Refer to the (X
and Y arrays) Single Plot graph in the XY Graph VI in the labview\
examples\general\graphs\gengraph.llb for an example of a graph
that accepts this data type.

The XY graph also accepts an array of points, where a point is a cluster that
contains an x value and a y value. Refer to the (Array of Pts) Single Plot
graph in the XY Graph VI in the labview\examples\general\
graphs\gengraph.llb for an example of a graph that accepts this data
type. The XY graph also accepts an array of complex data, in which the real
part is plotted on the x-axis and the imaginary part is plotted on the y-axis.

Multiplot XY Graphs
The XY graph accepts three data types for displaying multiple plots. The
XY graph accepts an array of plots, where a plot is a cluster that contains an
x array and a y array. Refer to the (X and Y arrays) Multi Plot graph in the
XY Graph VI in the labview\examples\general\graphs\
gengraph.llb for an example of a graph that accepts this data type.

The XY graph also accepts an array of clusters of plots, where a plot is an
array of points. A point is a cluster that contains an x value and a y value.
Refer to the (Array of Pts) Multi Plot graph in the XY Graph VI in the
labview\examples\general\graphs\gengraph.llb for an
example of a graph that accepts this data type. The XY graph also accepts
an array of clusters of plots, where a plot is an array of complex data, in
which the real part is plotted on the x-axis and the imaginary part is plotted
on the y-axis.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-61 LabVIEW Introduction Course Manual

Exercise 3-6 Temperature Multiplot VI

Goal
Plot multiple data sets on a single waveform chart and customize the chart
view.

Scenario
Modify the VI from Exercise 3-5 to plot both the current temperature and
the running average on the same chart. In addition, allow the user to examine
a portion of the plot while the data is being acquired.

Design
Figure 3-32 shows the front panel for the existing VI (Average Temperature
VI) and Figure 3-33 shows the block diagram.

Figure 3-32. Average Temperature VI Front Panel

To allow the user to examine a portion of the plot while the data is begin
acquired, display the Scale Legend and Graph Palette for the waveform
chart. Also, expand the legend to show additional plots.

To modify the block diagram in Figure 3-33, you must modify the chart
terminal to accept multiple pieces of data. Use a Bundle function to combine
the average temperature and the current temperature into a cluster to pass to
the Temperature History chart terminal.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-62 ni.com

Figure 3-33. Average Temperature VI Block Diagram

Modify the block diagram first, then modify the front panel.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-63 LabVIEW Introduction Course Manual

Implementation
1. Open Average Temperature.vi in the C:\Exercises\

LabVIEW Basics I\Average Temperature directory. You created
this VI in the previous exercise.

2. Select File»Save As and rename the VI Temperature
Multiplot.vi in the C:\Exercises\LabVIEW Basics I\
Temperature Multiplot directory. Create the directory if it does not
exist. Select Substitute Copy for Original option.

In the steps below, you modify the block diagram similar to that shown in
Figure 3-35.

Figure 3-34. Temperature Multiplot VI Block Diagram

3. Open the block diagram.

4. Pass the current temperature and the average temperature to the
Temperature History chart terminal.

❑ Delete the wire connecting the Divide function to the Temperature
History chart terminal.

❑ Place a Bundle function between the Divide function and the
Temperature History chart terminal. If necessary, enlarge the While
Loop to make space.

❑ Wire the output of the Divide function to the top input of the Bundle
function.

❑ Wire the current temperature to the bottom input of the Bundle
function. The current temperature is the output of the Thermometer
subVI inside the While Loop.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-64 ni.com

❑ Wire the output of the Bundle function to the Temperature History
chart terminal.

In the following steps, modify the front panel similar to the one shown in
Figure 3-34.

Figure 3-35. Temperature Multiplot VI Front Panel

5. Open the front panel.

6. Show both plots in the plot legend of the Waveform Chart.

❑ Use the Positioning tool to resize the plot legend to two objects,
using the top middle resizing node.

❑ Rename the top plot Running Avg.

❑ Rename the bottom plot Current Temp.

❑ Change the plot type of Current Temp. Use the Operating tool to
select the plot in the plot legend and choose the plots you want.

Tip The order of the plots listed in the plot legend is the same as the order of the items
wired to the Bundle function on the block diagram.

7. Show the Scale Legend and Graph Palette of the Waveform Chart.

❑ Right-click the Temperature History Waveform Chart and select
Visible Items»Scale Legend from the shortcut menu.

❑ Right-click the Temperature History Waveform Chart and select
Visible Items»Graph Palette from the shortcut menu.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-65 LabVIEW Introduction Course Manual

8. Save the VI.

Testing
1. Run the VI. Use the tools in the Scale Legend and Graph palette to

examine the data as it is generated.

2. Change the Power switch to Off to stop the VI.

3. Close the VI when you are finished.

End of Exercise 3-6

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-66 ni.com

I. Case Structures
A Case structure, shown as follows, has two or more subdiagrams, or cases.

Only one subdiagram is visible at a time, and the structure executes only one
case at a time. An input value determines which subdiagram executes. The
Case structure is similar to switch statements or if...then...else statements in
text-based programming languages.

The case selector label at the top of the Case structure, shown as follows,
contains the name of the selector value that corresponds to the case in the
center and decrement and increment arrows on each side.

Click the decrement and increment arrows to scroll through the available
cases. You also can click the down arrow next to the case name and select a
case from the pull-down menu.

Wire an input value, or selector, to the selector terminal, shown as follows,
to determine which case executes.

You must wire an integer, Boolean value, string, or enumerated type value
to the selector terminal. You can position the selector terminal anywhere on
the left border of the Case structure. If the data type of the selector terminal
is Boolean, the structure has a TRUE case and a FALSE case. If the selector
terminal is an integer, string, or enumerated type value, the structure can
have any number of cases.

Specify a default case for the Case structure to handle out-of-range values.
Otherwise, you must explicitly list every possible input value. For example,
if the selector is an integer and you specify cases for 1, 2, and 3, you must
specify a default case to execute if the input value is 4 or any other
unspecified integer value.

Right-click the Case structure border to add, duplicate, remove, or rearrange
cases and to select a default case.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-67 LabVIEW Introduction Course Manual

Selecting a Case
Figure 3-36 shows a VI that uses a Case structure to execute different code
dependent on whether a user selects degrees Celsius or Fahrenheit for their
desired temperature units. The top block diagram shows the True case in the
foreground. In the middle block diagram, the False case is selected. To
select a case, enter the value in the case selector identifier or use the
Labeling tool to edit the values. After you select another case, that case
appears at the front, as shown in the bottom block diagram of Figure 3-36.

Figure 3-36. Changing the case view of a Case Structure

If you enter a selector value that is not the same type as the object wired to
the selector terminal, the value appears red to indicate that you must delete
or edit the value before the structure can execute, and the VI will not run.
Also, because of the possible round-off error inherent in floating-point
arithmetic, you cannot use floating-point numbers as case selector values. If
you wire a floating-point value to the case, LabVIEW rounds the value to
the nearest even integer. If you type a floating-point value in the case
selector label, the value appears red to indicate that you must delete or edit
the value before the structure can execute.

Input and Output Tunnels
You can create multiple input and output tunnels for a Case structure. Inputs
are available to all cases, but cases do not need to use each input. However,
you must define each output tunnel for each case.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-68 ni.com

Consider the following example: A Case structure on the block diagram has
an output tunnel, but in at least one of the cases, there is no output value
wired to the tunnel. If you run this case, LabVIEW does not know what
value to place in the output. LabVIEW indicates this error by leaving the
center of the tunnel white. The unwired case might not be the case that is
currently visible on the block diagram.

To correct this error, move to the case(s) that contain(s) the unwired output
tunnel and wire an output to the tunnel. You also can right-click the output
tunnel and select Use Default If Unwired from the shortcut menu to use the
default value for the tunnel data type for all unwired tunnels. When the
output is properly wired in all cases, the output tunnel is a solid color.

Avoid using the Use Default If Unwired option. Using this option does not
document the block diagram well, and can confuse other programmers using
your code. The Use Default If Unwired option also makes debugging your
code difficult. If you choose to use this option, be aware that the default
value used is the default value for the data type that is wired to the tunnel.
For example, if the tunnel is a Boolean data type, the default value is
FALSE. Use the Table 3-3 for assistance.

Examples
In the following examples, the numeric values pass through tunnels to the
Case structure and are either added or subtracted, depending on the value
wired to the selector terminal.

Boolean Case Structure
The following example is a Boolean Case structure. The cases overlap each
other to simplify the illustration.

Table 3-3. Data Type Default Values

Data Type Default Value

Numeric 0

Boolean FALSE

String empty

Lesson 3 Implementing a VI

© National Instruments Corporation 3-69 LabVIEW Introduction Course Manual

If the Boolean control wired to the selector terminal is True, the VI adds the
numeric values. Otherwise, the VI subtracts the numeric values.

Integer Case Structure
The following example is an integer Case structure.

Integer is a text ring control located on the Controls»Text Controls palette
that associates numeric values with text items. If the text ring control wired
to the selector terminal is 0 (add), the VI adds the numeric values. If the
value is 1 (subtract), the VI subtracts the numeric values. If the text ring
control is any other value than 0 (add) or 1 (subtract), the VI adds the
numeric values, because that is the default case.

String Case Structure
The following example is a string Case structure.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-70 ni.com

If String is add, the VI adds the numeric values. If String is subtract,
the VI subtracts the numeric values.

Enumerated Case Structure
The following example is an enumerated Case structure.

An enumerated type control gives users a list of items from which to select.
The data type of an enumerated type control includes information about the
numeric values and string labels in the control. When you wire an
enumerated type control to the selector terminal of a Case structure, the case
selector displays a case for each item in the enumerated type control. The
Case structure executes the appropriate case subdiagram based on the
current item in the enumerated type control. In the previous block diagram,
if Enum is add, the VI adds the numeric values. If Enum is subtract, the
VI subtracts the numeric values.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-71 LabVIEW Introduction Course Manual

Exercise 3-7 Project: Determine Warnings VI

Goal
Modify a VI to use a Case structure to make a software decision.

Scenario
You created a VI where a user inputs a temperature, a maximum
temperature and a minimum temperature. A warning string is generated
depending on the relationship of the given inputs. However, a situation
could occur that causes the VI to work incorrectly. The user could enter a
maximum temperature that is less than the minimum temperature. Modify
the VI so that a different string is generated to alert the user to the error:
"Upper Limit < Lower Limit." Set the warning Boolean to True to
indicate the error.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-72 ni.com

Design
Modify the flowchart created for the original Determine Warnings VI as
shown in Figure 3-37.

Figure 3-37. Modified Determine Warnings Flowchart

Current Temp
>= Max Temp

Yes

No

Output
Heatstroke

Warning and
TRUE

Yes

Current Temp
<= Min Temp

Output
Freeze Warning

and TRUE

Output
No Warning and

FALSE
No

Min Temp >=
Max Temp

No

Yes

Output
Upper Limit

< Lower Limit
and TRUE

Create Error

Lesson 3 Implementing a VI

© National Instruments Corporation 3-73 LabVIEW Introduction Course Manual

The original block diagram for the Determine Warnings VI appears in
Figure 3-38. This VI must have a Case structure added to execute the code
if the maximum temperature is greater than or equal to the minimum
temperature. Otherwise, the code will not execute. Instead, a new string is
generated and the Warning? Boolean indicator is set to True.

Figure 3-38. Determine Warnings VI Block Diagram

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-74 ni.com

Implementation
Follow the instructions given below to modify the block diagram similar to
that shown in Figure 3-39. This VI is part of the temperature weather station
project.

Figure 3-39. Determine Warnings VI Block Diagram

1. Open the Determine Warnings VI.

❑ Select File»Open Project.

❑ Open the Weather Station.lvproj in the C:\Exercises\
LabVIEW_Basics_I\Course Project directory.

❑ Double-click the Determine Warnings.vi in the Project Explorer
window to open the VI.

2. Open the block diagram.

3. Create space on the block diagram to add the case structure.

The Max Temp and Min Temp controls and the Warning Text and
Warning? indicators should be outside of the new Case structure,
because both cases of the case structure use these indicators and
controls.

❑ Select the Min Temp and Max Temp control terminals.

Tip To select more than one item press the <Shift> key while you select the items.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-75 LabVIEW Introduction Course Manual

❑ While the terminals are still selected, use the left arrow key on the
keyboard to move the controls further to the left of the block
diagram.

❑ Select the Warning Text and Warning? indicator terminals.

❑ Align the terminals by selecting Align Objects»Left Edges.

❑ While the terminals are still selected, use the right arrow key on the
keyboard to move the controls further to the right of the block
diagram.

4. Compare Min Temp and Max Temp.

❑ Place the Greater? function on the block diagram.

❑ Wire the Min Temp output to the x input on the Greater? function.

❑ Wire the Max Temp output to the y input on the Greater? function.

❑ Place a Case structure around the block diagram code, except for the
excluded terminals.

❑ Wire the output of the Greater? function to the case selector of the
Case structure.

5. If the Min Temp is less than the Max Temp, execute the code that
determines the warning string and boolean.

❑ While the True case is visible, right-click the border of the Case
structure, and select Make This Case False from the shortcut menu.
When you create a Case structure around existing code, the code is
automatically placed in the True case.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-76 ni.com

Figure 3-40. Determine Warnings VI Block Diagram

6. If the Min Temp is greater than the Max Temp, create a custom string
for the Warning Text indicator and set the Warning? indicator to True,
as shown in Figure 3-40.

❑ Select the True case.

❑ Right-click the string output tunnel.

❑ Select Create»Constant.

❑ Enter Upper Limit < Lower Limit in the constant.

❑ Right-click the Boolean output tunnel.

❑ Select Create»Constant.

❑ Use the Operating tool to change the constant to a True constant.

7. Save the VI.

Testing
1. Switch to the front panel of the VI.

2. Resize the Warning Text indicator to a length to accommodate the new
string.

3. Test the VI by entering values from Table 3-4 for Current Temp, Max
Temp, and Min Temp, and running for each set.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-77 LabVIEW Introduction Course Manual

Table 3-4 shows the expected Warning Text and Warning? Boolean
value for each set of inputs.

4. Save and close the VI.

5. Save and close the project.

End of Exercise 3-7

Table 3-4. Testing Values for Determine Warnings.vi

Current Temp Max Temp Min Temp Warning Text Warning?

30 30 10 Heatstroke
Warning

 True

25 30 10 No Warning False

10 30 10 Freeze Warning True

25 20 30 Upper limit <
Lower Limit

True

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-78 ni.com

J. Formula Nodes
When you want to use a complicated equation in LabVIEW, you do not have
to wire together various arithmetic functions on the block diagram. You can
develop equations in a familiar, mathematical environment and then
integrate the equations into an application.

The Formula Node is a convenient text-based node you can use to perform
mathematical operations on the block diagram. You do not have to access
any external code or applications, and you do not have to wire low-level
arithmetic functions to create equations. In addition to text-based equation
expressions, the Formula Node can accept text-based versions of if
statements, while loops, for loops, and do loops, which are familiar to C
programmers. These programming elements are similar to what you find in
C programming but are not identical.

Formula Nodes are useful for equations that have many variables or are
otherwise complicated and for using existing text-based code. You can copy
and paste the existing text-based code into a Formula Node rather than
recreating it graphically.

Create the input and output terminals of the Formula Node by right-clicking
the border of the node and selecting Add Input or Add Output from the
shortcut menu, then enter the variable for the input or output. Enter the
equation in the structure. Each equation statement must terminate with a
semicolon (;).

You also can use Formula Nodes for decision making. The following block
diagram shows two different ways of using an if-then statement in a
Formula Node. The two structures produce the same result.

The Formula Node can perform many different operations. Refer to the
LabVIEW Help for more information about functions, operations, and
syntax for the Formula Node.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-79 LabVIEW Introduction Course Manual

Note The Formula Express VI uses a calculator interface to create mathematical
formulas. You can use this Express VI to perform most math functions that a basic
scientific calculator can compute. Refer to the LabVIEW Help for more information
about the Formula Express VI.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-80 ni.com

Exercise 3-8 Optional: Square Root VI

Goal
Create a VI that uses a Case structure to make a software decision.

Scenario
Build a VI that calculates the square root of a number the user enters. If the
number is negative, display the following message to the user:
Error... Cannot find the square root of a negative
number.

Design

Inputs and Outputs

Flowchart

Figure 3-41. Square Root VI Flowchart

Table 3-5. Inputs and Outputs

Type Name Properties

Input Number DBL; default value of
25

Output Square Root Value DBL

Display Error
Dialog

Number>=0?

Yes

No

Find Square Root
of Number

Lesson 3 Implementing a VI

© National Instruments Corporation 3-81 LabVIEW Introduction Course Manual

Implementation
1. Open a blank VI and build the front panel shown in Figure 3-42.

Figure 3-42. Square Root VI Front Panel

2. Place a numeric control on the front panel.

❑ Name the numeric control Number.

❑ Place a numeric indicator on the front panel.

❑ Rename the numeric indicator Square Root Value.

Build the block diagram shown in Figure 3-43.

Figure 3-43. Square Root VI Block Diagram

3. Determine whether Number is greater than or equal to zero, because
you cannot calculate the square root of a negative number.

❑ Place the Greater or Equal to 0? function to the right of the Number
terminal. This function returns True if Number is greater than or
equal to 0.

❑ Wire Number to the input of the Greater or Equal to 0? function.

4. If Number is less than 0, display a dialog box that informs the user of
the error.

❑ Place the Case structure on the block diagram.

❑ Click the decrement or increment button to select the False case.

❑ Place a numeric constant in the False case.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-82 ni.com

❑ Right-click the numeric constant and select Representation»I32.

❑ Enter -99999 in the numeric constant.

❑ Wire the numeric constant to the right edge of the case structure.

❑ Wire the new tunnel to the Square Root Value terminal.

❑ Place the One Button Dialog function in the False case.
This function displays a dialog box that contains a specified
message.

❑ Right-click the message input of the One Button Dialog function
and select Create»Constant from the shortcut menu

❑ Enter Error...Negative Number in the constant.

❑ Finish wiring the False case as shown in Figure 3-43.

5. If Number is greater than or equal to 0, calculate the square root of the
number.

❑ Select the True case of the Case structure.

❑ Place the Square Root function in the True case. This function
returns the square root of Number.

❑ Wire the function as shown in Figure 3-44.

Figure 3-44. True case of Square Root VI

6. Save the VI as Square Root.vi in the C:\Exercises\LabVIEW
Basics I\Square Root directory.

Testing
1. Display the front panel.

2. Enter a positive number into the Number control.

Lesson 3 Implementing a VI

© National Instruments Corporation 3-83 LabVIEW Introduction Course Manual

3. Run the VI.

4. Enter a negative number into the Number control.

Caution Do not run this VI continuously. Under certain circumstances, continuously
running this VI could result in an endless loop.

5. Run the VI.

If Number is positive, the VI executes the True case and returns
the square root of Number. If Number is negative, the VI executes
the False case, returns –99999, and displays a dialog box with
the message Error...Negative Number.

6. Close the VI.

End of Exercise 3-8

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-84 ni.com

Exercise 3-9 Optional: Determine Warnings Challenge VI

Lesson Challenge Exercise

Goal
Modify an existing VI to use the Formula Node or a Case structure to make
a software decision.

Scenario
In the Determine Warnings VI from Exercise 3-2, you used the Select
function to pass a string based on decision. Revise this block diagram to use
either a Formula Node or a Case structure (or a combination of both) to
complete the same purpose.

Design

Inputs and Outputs

Table 3-6. Determine Warnings VI Inputs and Outputs

Type Name Properties

Numeric Control Current Temp Double-Precision,
Floating-Point

Numeric Control Max Temp Double-Precision,
Floating-Point

Numeric Control Min Temp Double-Precision,
Floating-Point

String Indicator Warning Text Three potential values:
Heatstroke Warning, No
Warning, and Freeze Warning

Round LED Warning?

Lesson 3 Implementing a VI

© National Instruments Corporation 3-85 LabVIEW Introduction Course Manual

Flowchart
Figure 3-45 shows the flowchart you used in Exercise 3-2 to create the
Determine Warnings VI.

Figure 3-45. Determine Warnings VI Flowchart

Current Temp
>=Max Temp?

Yes

No

Warning Text =
Heatstroke
Warning

Yes

Current Temp
<= Min Temp?

Warning Text =
Freeze Warning

Pass current value
of Warning Text

No

Warning Text =
No Warning

Warning
Text = No
Warning?

Warning ? = TrueWarning ? = False

Yes

No

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-86 ni.com

Implementation
As part of the challenge, no implementation instructions are given for this
exercise. The VI you should start from is located in the C:\Exercises\
LabVIEW Basics I\Determine Warnings Challenge directory.

If you need assistance, open the solution VIs. The solutions are located in
C:\Solutions\LabVIEW Basics I\Exercise 3-9 directory.

The solution to this exercise is not used in the course project, so you do not
need to add it to the Weather Station.proj file.

End of Exercise 3-9

Lesson 3 Implementing a VI

© National Instruments Corporation 3-87 LabVIEW Introduction Course Manual

Exercise 3-10 Optional: Determine More Warnings VI

Goal
Manipulate strings using string functions.

Scenario
You have a VI that determines whether a Heatstroke Warning or a Freeze
Warning has occurred, based on temperature input. You must expand this
VI so that it also determines whether a High Wind Warning has occurred
based on a wind speed reading and a maximum wind speed setting. The
warnings must be displayed as a single string. For example, if a Heatstroke
Warning and a High Wind Warning has occurred, the string should read:
Heatstroke and High Wind Warning.

Design

Inputs and Outputs

Table 3-7. Determine More Warnings VI Inputs and Outputs

Type Name Properties

Numeric
Control

Current Temp Double-Precision

Numeric
Control

Max Temp Double-Precision

Numeric
Control

Min Temp Double-Precision

Numeric
Control

Current Wind
Speed

Double-Precision

Numeric
Control

Max Wind Speed Double-Precision

String
Indicator

Warning Text Potential values: Heatstroke
Warning, Freeze Warning,
Heatstroke and High Wind
Warning, Freeze and High Wind
Warning, High Wind Warning and
No Warning

Boolean
Indicator

Warning? Boolean

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-88 ni.com

Flowchart
The flowchart shown in Figure 3-46 was used for the Determine Warnings
VI. In this VI, wind data is not taken. Modify this flowchart to determine the
High Wind Warning as well.

Figure 3-46. Determine Warnings VI Flow Chart

Current Temp
>=Max Temp?

Yes

No

Warning Text =
Heatstroke
Warning

Yes

Current Temp
<= Min Temp?

Warning Text =
Freeze Warning

Pass current value
of Warning Text

No

Warning Text =
No Warning

Warning
Text = No
Warning?

Warning ? = TrueWarning ? = False

Yes

No

Lesson 3 Implementing a VI

© National Instruments Corporation 3-89 LabVIEW Introduction Course Manual

The flowchart shown in Figure 3-47 is a modified version of the flowchart,
designed to determine the High Wind Warning, in addition to the warnings
already determined.

Figure 3-47. Determine More Warnings VI Flow Chart

VI Architecture
There are many ways to write this program. In this exercise, you use case
structures to determine what string to pass, and Concatenate Strings
functions to merge strings together.

Current Temp
>= Max Temp?

Yes

No

Create
"Heatstroke" string

Yes

Current Temp
<= Min Temp?

Create "Freeze"
string

Min Temp
Max Temp

Yes

Output
Upper Limit

< Lower Limit
and TRUE

Current Wind
>= Max Wind?

Create "High
Wind" string

Yes

Create empty
string

No

No

Create empty
string

Create empty
string

No

Combine strings

Combine and
display Warning
Text; determine

and display
Warning?

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-90 ni.com

Implementation
A portion of this VI has already been built for you. The front panel of the VI
is shown in Figure 3-48. This front panel retrieves from the user the current
temperature, the maximum temperature, the minimum temperature, the
current wind speed and the maximum wind speed and displays to the user
the warning string and the warning Boolean. This VI is not used in the
Weather Station project in this course.

Figure 3-48. Determine More Warnings Front Panel

1. Open the Determine More Warnings.vi in the C:\Exercises\
LabVIEW Basics I\Determine More Warnings directory.

Create a block diagram similar to Figure 3-49.

2. Open the block diagram.

3. Use Figures 3-49 through 3-53 to assist you in building the block
diagram code.

4. You use the following block diagram objects in this exercise:

❑ Case structure.

❑ Empty String constant.

❑ Space constant.

❑ Equal function.

❑ Concatenate Strings function.

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-92 ni.com

Fi
gu

re
 3

-4
9.

 D
et

er
m

in
e

M
or

e
W

ar
ni

ng
s

Bl
oc

k
Di

ag
ra

m

Lesson 3 Implementing a VI

© National Instruments Corporation 3-93 LabVIEW Introduction Course Manual

Figure 3-50. True Cases for When Temperature and Wind Warnings Are Not
Generated

Figure 3-51. True Case for When a Temperature Warning is Generated

Figure 3-52. False Cases for When Wind and Temperature Warnings Are Generated

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-94 ni.com

Figure 3-53. False Case for When a Wind Warning is Generated

5. Save the VI.

Testing

1. Test the following values to be sure your VI works as expected.

2. Close and save the VI when you are finished.

End of Exercise 3-10

Name Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Current
Temp

20 30 10 30 10 20

Max Temp 25 25 25 25 25 25

Min Temp 15 15 15 15 15 15

Current
Wind
Speed

25 25 25 35 35 35

Max Wind
Speed

30 30 30 30 30 30

Warning
Text

No Warning Heatstroke
Warning

Freeze
Warning

Heatstroke
and High

Wind
Warning

Freeze and
High Wind

Warning

High Wind
Warning,

Warning? False True True True True True

Lesson 3 Implementing a VI

© National Instruments Corporation 3-95 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. Which of the following identifies the control or indicator on the block
diagram?

a. Caption

b. Location

c. Label

d. Value

2. Which of the following structures must run at least one time?

a. While Loop

b. For Loop

3. Which of the following is ONLY available on the block diagram?

a. Control

b. Constant

c. Indicator

d. Connector Pane

4. Which of the following mechanical actions causes a Boolean in the false
state to change to true when you press it and stay true until you release
it and LabVIEW has read the value?

a. Switch Until Released

b. Switch When Released

c. Latch Until Released

d. Latch When Released

Lesson 3 Implementing a VI

© National Instruments Corporation 3-97 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

1. Which of the following identifies the control or indicator on the block
diagram?

a. Caption

b. Location

c. Label

d. Value

2. Which of the following structures must run at least one time?

a. While Loop

b. For Loop

3. Which of the following is ONLY available on the block diagram?

a. Control

b. Constant

c. Indicator

d. Connector Pane

4. Which of the following mechanical actions causes a Boolean in the false
state to change to true when you press it and stay true until you release
it and LabVIEW has read the value?

a. Switch Until Released

b. Switch When Released

c. Latch Until Released

d. Latch When Released

Lesson 3 Implementing a VI

LabVIEW Introduction Course Manual 3-98 ni.com

Notes

© National Instruments Corporation 4-1 LabVIEW Introduction Course Manual

4
Relating Data

Sometimes it is beneficial to group related data to one another. Arrays and
clusters are used for this purpose. Arrays combine data of the same datatype
into one data structure, and clusters combine data of multiple datatypes into
one data structure. Type definitions are frequently used to define custom
arrays and clusters. This lesson explains arrays, clusters and type
definitions, and applications where using these can be beneficial.

Topics

A. Arrays

B. Clusters

C. Type Definitions

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-2 ni.com

A. Arrays
An array consists of elements and dimensions. Elements are the data that
make up the array. A dimension is the length, height, or depth of an array.
An array can have one or more dimensions and as many as (2

31
) – 1

elements per dimension, memory permitting.

You can build arrays of numeric, Boolean, path, string, waveform, and
cluster data types. Consider using arrays when you work with a collection
of similar data and when you perform repetitive computations. Arrays are
ideal for storing data you collect from waveforms or data generated in loops,
where each iteration of a loop produces one element of the array.

Restrictions
You cannot create arrays of arrays. However, you can use a
multidimensional array or create an array of clusters where each cluster
contains one or more arrays. Also, you cannot create an array of subpanel
controls, tab controls, .NET controls, ActiveX controls, charts, or multiplot
XY graphs.

Refer to the Clusters section of this lesson for more information about
clusters.

An example of a simple array is a text array that lists the nine planets of our
solar system. LabVIEW represents this as a 1D array of strings with nine
elements.

Array elements are ordered. An array uses an index so you can readily
access any particular element. The index is zero-based, which means it is in
the range 0 to n – 1, where n is the number of elements in the array. For
example, n = 9 for the nine planets, so the index ranges from 0 to 8. Earth is
the third planet, so it has an index of 2.

Figure 4-1 shows an example of an array of numerics. The first element
shown in the array (3.00) is at index 1, and the second element (1.00) is at
index 2. The element at index 0 is not shown in this image, because element
1 is selected in the index display. The element selected in the index display
always refers to the element shown in the upper left corner of the element
display.

Lesson 4 Relating Data

© National Instruments Corporation 4-3 LabVIEW Introduction Course Manual

Figure 4-1. Array Control of Numerics

Creating Array Controls and Indicators
Create an array control or indicator on the front panel by placing an array
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which can be a numeric, Boolean value, string, path,
refnum, or cluster control or indicator, into the array shell.

Figure 4-2. Placing a Numeric Control in an Array Shell

If you attempt to drag an invalid control or indicator such as an XY graph
into the array shell, you are unable to drop the control or indicator in the
array shell.

You must insert an object in the array shell before you use the array on the
block diagram. Otherwise, the array terminal appears black with an empty
bracket and has no data type associated with it.

Two-Dimensional Arrays
The previous examples use 1D arrays. A 2D array stores elements in a grid.
It requires a column index and a row index to locate an element, both of
which are zero-based. The following figure shows an 8 column by 8 row 2D
array, which contains 8 × 8 = 64 elements.

1 Index Display 2 Element Display

2

1

Column Index

0
1
2
3

Row Index

0 1 2 3 4 5

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-4 ni.com

To create a multidimensional array on the front panel, right-click the index
display and select Add Dimension from the shortcut menu. You also can
resize the index display until you have as many dimensions as you want.

Initializing Arrays
You can initialize an array, or leave it unitialized. When an array is
initialized, you defined the number of elements in each dimension, and the
contents of each element. An unitialized array has dimension but no
elements. Figure 4-3 shows an uninitialized 2D array control. Notice that
the elements are all greyed out. This indicates that the array is unitialized.

Figure 4-3. Two Dimensional Uninitialized Array

In Figure 4-4, six elements are initialized. In a two-dimensional array, once
a single element in a row has been initialized, all elements in that row that
are also in columns that are initialized are automatically initialized and
populated with the default value for the data type. For example, in
Figure 4-4, if you type 4 into the element in the first column, third row, the
elements in the second and third column in the third row are automatically
populated with a 0.

Figure 4-4. An Initialized Two Dimensional Array with six elements

Creating Array Constants
To create an array constant on the block diagram, select an array constant on
the Functions palette, place the array shell on the block diagram, and place
a string constant, numeric constant, or cluster constant in the array shell.
You can use an array constant to store constant data or as a basis for
comparison with another array. Array constants also are useful for passing
data into a subVI.

Auto-Indexing Array Inputs
If you wire an array to or from a For Loop or While Loop, you can link each
iteration of the loop to an element in that array by enabling auto-indexing.
The tunnel image changes from a solid square to the image shown at left to

Lesson 4 Relating Data

© National Instruments Corporation 4-5 LabVIEW Introduction Course Manual

indicate auto-indexing. Right-click the tunnel and select Enable Indexing
or Disable Indexing from the shortcut menu to toggle the state of the tunnel.

Array Inputs
If you enable auto-indexing on an array wired to a For Loop input terminal,
LabVIEW sets the count terminal to the array size so you do not need to wire
the count terminal. Because you can use For Loops to process arrays an
element at a time, LabVIEW enables auto-indexing by default for every
array you wire to a For Loop. Disable auto-indexing if you do not need to
process arrays one element at a time.

In Figure 4-5, the For Loop executes a number of times equal to the number
of elements in the array. Normally, if the count terminal of the For Loop is
not wired, the run arrow is broken. However, in this case the run arrow is not
broken.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-6 ni.com

Figure 4-5. Array used to set For Loop Count

If you enable auto-indexing for more than one tunnel or if you wire the count
terminal, the count becomes the smaller of the choices. For example, if two
auto-indexed arrays enter the loop, with 10 and 20 elements respectively,
and you wire a value of 15 to the count terminal, the loop executes 10 times,
and the loop indexes only the first 10 elements of the second array.

Array Outputs
When you auto-index an array output tunnel, the output array receives a new
element from every iteration of the loop. Therefore, auto-indexed output
arrays are always equal in size to the number of iterations. The wire from
the output tunnel to the array indicator becomes thicker as it changes to an
array at the loop border, and the output tunnel contains square brackets
representing an array, as shown Figure 4-6.

Figure 4-6. Auto-Indexed Output

Right-click the tunnel at the loop border and select Enable Indexing or
Disable Indexing from the shortcut menu to enable or disable auto-indexing.
Auto-indexing for While Loops is disabled by default.

 For example, disable auto-indexing if you need only the last value passed
out of the tunnel.

Lesson 4 Relating Data

© National Instruments Corporation 4-7 LabVIEW Introduction Course Manual

Creating Two-Dimensional Arrays
You can use two For Loops, one inside the other, to create a 2D array.
The outer For Loop creates the row elements, and the inner For Loop
creates the column elements, as shown in Figure 4-7.

Figure 4-7. Creating a Two-Dimensional Array

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-8 ni.com

Exercise 4-1 Concept: Manipulating Arrays

Goal
Manipulate arrays using various LabVIEW Functions.

Description
You are given a VI and asked to enhance it for a variety of purposes. For
each part of this exercise, begin with the Array Investigation.vi
located in the C:\Exercises\LabVIEW Basics I\Manipulating
Arrays directory. The front panel of this VI is shown in Figure 4-8.

Figure 4-8. Array Investigation VI Front Panel

The block diagram of this VI is shown in Figure 4-9.

Figure 4-9. Array Investigation VI Block Diagram

In this exercise, you are given the scenario for each part first. If you want
detailed implementation instructions, they are given for each part at the end
of this exercise.

Part 1: Iterate, Modify, and Chart Array
Modify the Array Investigation VI so that after the array is created, the array
is indexed into For Loops where you multiply each element of the array by
100 and coerce each element to the nearest whole number. The resulting two
dimensional array is graphed to an Intensity Chart.

Lesson 4 Relating Data

© National Instruments Corporation 4-9 LabVIEW Introduction Course Manual

Part 2: Simplified Iterate, Modify, and Chart Array
Modify the Array Investigation VI or the solution from Part 1 to accomplish
the same goals without using the nested For Loops.

Part 3: Create Subset Arrays
Modify the Array Investigation VI so that the VI creates a new array that
contains the contents of the third row, and another new array that contains
the contents of the second column.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-10 ni.com

Part 1: Implementation
Modify Array Investigation VI so that after the array is created, the array is
indexed into For Loops where each element of the array is multiplied by
100, and coerced to the nearest whole number. The resulting two
dimensional array is graphed to an Intensity Chart.

1. Open Array Investigation.vi located in the C:\Exercises\
LabVIEW Basics I\Manipulating Arrays directory.

2. Save the VI as Array Investigation Part 1.vi.

3. Place an intensity chart on the front panel of the VI, as shown in
Figure 4-10.

Figure 4-10. Array Investigation Part 1 VI Front Panel

4. Open the block diagram of the VI.

Lesson 4 Relating Data

© National Instruments Corporation 4-11 LabVIEW Introduction Course Manual

In the following steps, you create a block diagram similar to that in
Figure 4-11.

Figure 4-11. Array Investigation Part 1 VI Block Diagram

5. Iterate Array.

❑ Place a For Loop to the right of the existing code.

❑ Place a second For Loop inside the first For Loop.

❑ Wire the Array indicator terminal to the interior For Loop border.
This creates an auto-indexed input tunnel on both For Loops.

6. Multiply each element of the array by 100.

❑ Place a Multiply function in the interior For Loop.

❑ Wire the indexed input tunnel to the x terminal of the Multiply
function.

❑ Right-click the y terminal and select Create»Constant from the
shortcut menu.

❑ Enter 100 in the constant.

7. Round each element to the nearest whole number.

❑ Place a Round To Nearest function to the right of the Multiple
function.

❑ Wire the output of the Multiply function to the input of the Round
To Nearest function.

8. Create a 2D array on the output of the For Loops to recreate the modified
array.

❑ Wire the output of the Round To Nearest function to the outer For
Loop. This creates an auto-indexed output tunnel on both For Loops.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-12 ni.com

9. Wire the output array to the Intensity Chart.

10. Switch to the front panel.

11. Save the VI.

12. Enter values for Rows and Columns.

13. Run the VI.

Part 2: Implementation
Modify Part 1 to accomplish the same goals without using the nested For
Loops.

1. Open Array Investigation Part 1.vi if it is not still open from
the last part.

2. Save the VI as Array Investigation Part 2.VI.

3. Open the block diagram.

4. Right-click the interior For Loop, containing the Multiply and Round to
Nearest function, and select Remove For Loop.

5. Right-click the remaining For Loop and select Remove For Loop from
the shortcut menu. Your block diagram should resemble the one shown
in Figure 4-12.

Figure 4-12. Array Investigation Part 2 VI Block Diagram

6. Save the VI.

7. Switch to the front panel.

8. Enter values for Rows and Columns.

9. Run the VI.

Lesson 4 Relating Data

© National Instruments Corporation 4-13 LabVIEW Introduction Course Manual

Notice that the VI behaves the same as in Part 1. This is because
mathematical functions are polymorphic. For example, because the x input
of the Multiply function is a two-dimensional array, and the y input is a
scalar, the Multiply function multiplies each element in the array by the
scalar, and outputs an array of the same dimension as the x input.

Part 3: Implementation
Modify Array Investigation VI so that the VI creates a new array that
contains the contents of the third row, and another new array that contains
the contents of the second column.

1. Open Array Investigation.vi located in the C:\Exercises\
LabVIEW Basics I\Manipulating Arrays directory.

2. Save the VI as Array Investigation Part 3.VI.

3. Open the block diagram of the VI.

In the following steps, you build a block diagram similar to that shown in
Figure 4-13.

Figure 4-13. Array Investigation Part 3 VI Block Diagram

4. Retrieve the third row of data from Array using the Index Array
function.

❑ Place the Index Array function on the block diagram.

❑ Wire Array to the array terminal of Index Array.

Tip The Index Array function accepts an n-dimension array. After you wire the input
array to the Index Array function, the input and output terminal names change to match
the dimension of the array wired. Therefore, wire the input array to the Index Array
function before wiring any other terminals.

❑ Right-click the index(row) terminal of Index Array.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-14 ni.com

❑ Select Create»Constant from the shortcut menu.

❑ Enter 2 in the constant to retrieve the third row because the index
begins at zero.

❑ Right-click the subarray output of Index Array.

❑ Select Create»Indicator from the shortcut menu.

❑ Rename the indicator to Third Row.

5. Retrieve the second column of data from Array using the Index Array
function.

❑ Place another Index Array function on the block diagram.

❑ Wire Array to the array terminal of Index Array.

❑ Right-click the disable index(col) terminal of Index Array.

❑ Select Create»Constant.

❑ Enter 1 in the constant to retrieve the second column because the
index begins at zero.

❑ Right-click the subarray output of Index Array.

❑ Select Create»Indicator.

❑ Rename the indicator to Second Column.

6. Save the VI.

7. Switch to the front panel.

8. Enter values for Rows and Columns.

9. Run the VI.

End of Exercise 4-1

Lesson 4 Relating Data

© National Instruments Corporation 4-15 LabVIEW Introduction Course Manual

B. Clusters
Clusters group data elements of mixed types. An example of a cluster is the
LabVIEW error cluster, which combines a Boolean value, a numeric value,
and a string. A cluster is similar to a record or a struct in text-based
programming languages.

Refer to the Error Checking and Error Handling topic of the LabVIEW
Help for more information about using error clusters.

Bundling several data elements into clusters eliminates wire clutter on the
block diagram and reduces the number of connector pane terminals that
subVIs need. The connector pane has, at most, 28 terminals. If your front
panel contains more than 28 controls and indicators that you want to pass to
another VI, group some of them into a cluster and assign the cluster to a
terminal on the connector pane.

Most clusters on the block diagram have a pink wire pattern and data type
terminal. Clusters of numeric values, sometimes referred to as points, have
a brown wire pattern and data type terminal. You can wire brown numeric
clusters to Numeric functions, such as Add or Square Root, to perform the
same operation simultaneously on all elements of the cluster.

Clusters differ from arrays in that they are a fixed size. Like an array, a
cluster is either a control or an indicator. A cluster cannot contain a mixture
of controls and indicators.

Creating Cluster Controls and Indicators
Create a cluster control or indicator on the front panel by placing a cluster
shell on the front panel, as shown in the following figure, and dragging a
data object or element, which can be a numeric, Boolean values, string, path,
refnum, array, or cluster control or indicator, into the cluster shell. Resize
the cluster shell by dragging the cursor while you place the cluster shell on
the front panel.

Figure 4-14. Creation of a Cluster Control

Figure 4-15 is an example of a cluster containing three controls: a string, a
Boolean switch, and a numeric. A cluster is either a control or an indicator;
it cannot contain a mixture of controls and indicators.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-16 ni.com

Figure 4-15. Cluster Control Example

Creating Cluster Constants
To create a cluster constant on the block diagram complete the following
steps:

1. Select a cluster constant on the Functions palette.

2. Place the cluster shell on the block diagram.

3. Place a string constant, numeric constant, or cluster constant in the
cluster shell.

You can use a cluster constant to store constant data or as a basis for
comparison with another cluster.

If you have a cluster control or indicator on the front panel and you want to
create a cluster constant containing the same elements on the block diagram,
you can either drag that cluster from the front panel to the block diagram or
right-click the cluster on the front panel and select Create»Constant from
the shortcut menu.

Cluster Order
Cluster elements have a logical order unrelated to their position in the shell.
The first object you place in the cluster is element 0, the second is element
1, and so on. If you delete an element, the order adjusts automatically. The
cluster order determines the order in which the elements appear as terminals
on the Bundle and Unbundle functions on the block diagram. You can view
and modify the cluster order by right-clicking the cluster border and
selecting Reorder Controls In Cluster from the shortcut menu. The toolbar
and cluster change, as shown in Figure 4-16.

Lesson 4 Relating Data

© National Instruments Corporation 4-17 LabVIEW Introduction Course Manual

Figure 4-16. Reordering a Cluster

The white box on each element shows its current place in the cluster order.
The black box shows the new place in the order for an element. To set the
order of a cluster element, enter the new order number in the Click to set to
text box and click the element. The cluster order of the element changes, and
the cluster order of other elements adjusts. Save the changes by clicking the
Confirm button on the toolbar. Revert to the original order by clicking
the Cancel button.

To wire clusters to each other, both clusters must have the same number of
elements. Corresponding elements, determined by the cluster order, must
have compatible data types. For example, if a double-precision floating-
point numeric value in one cluster corresponds in cluster order to a string in
the another cluster, the wire on the block diagram appears broken and the VI
does not run. If the numeric values are different representations, LabVIEW
coerces them to the same representation.

Using Cluster Functions
Use the Cluster functions to create and manipulate clusters. For example,
you can perform tasks similar to the following:

• Extract individual data elements from a cluster.

• Add individual data elements to a cluster.

• Break a cluster out into its individual data elements.
Use the Bundle function to assemble a cluster, the Bundle and Bundle by
Name functions to modify a cluster, and the Unbundle and Unbundle by
Name functions to disassemble clusters.

1 Confirm Button
2 Cancel Button

3 Cluster Order Cursor
4 Current Order

5 New Order

5 4

1

3

2

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-18 ni.com

You also can create the Bundle, Bundle by Name, Unbundle, and Unbundle
by Name functions by right-clicking a cluster terminal on the block diagram
and selecting Cluster Palette from the shortcut menu. The Bundle and
Unbundle functions automatically contain the correct number of terminals.
The Bundle by Name and Unbundle by Name functions appear with the first
element in the cluster. Use the Positioning tool to resize the Bundle by Name
and Unbundle by Name functions to show the other elements of the cluster.

Assembling Clusters
Use the Bundle function to assemble a cluster from individual elements or
to change the values of individual elements in an existing cluster without
having to specify new values for all elements. Use the Positioning tool to
resize the function or right-click an element input and select Add Input
from the shortcut menu.

Figure 4-17. Assembling a Cluster on the Block Diagram

Modifying a Cluster
If you wire the cluster input, you can wire only the elements you want to
change. For example, the Input Cluster shown in Figure 4-18 contains three
controls.

Figure 4-18. Bundle Used to Modify a Cluster

If you know the cluster order, you can use the Bundle function to change
the Command value by wiring the elements shown in the following figure.

You can also use the Bundle by Name function to replace or access labeled
elements of an existing cluster. Bundle by Name works similarly to the
Bundle function, but instead of referencing cluster elements by their cluster
order, it references them by their owned labels. You can access only

Lesson 4 Relating Data

© National Instruments Corporation 4-19 LabVIEW Introduction Course Manual

elements with owned labels. The number of inputs does not need to match
the number of elements in output cluster.

Use the Operating tool to click an input terminal and select an element from
the pull-down menu. You also can right-click the input and select the
element from the Select Item shortcut menu.

In Figure 4-19, you can use the Bundle by Name function to change
Command and Function.

Figure 4-19. Bundle By Name Used to Modify a Cluster

Use the Bundle by Name function for data structures that might change
during development. If you add a new element to the cluster or modify its
order, you do not need to rewire the Bundle by Name function because the
names still are valid.

Disassembling Clusters
Use the Unbundle function to split a cluster into its individual elements.

Use the Unbundle by Name function to return the cluster elements whose
names you specify. The number of output terminals does not depend on the
number of elements in the input cluster.

Use the Operating tool to click an output terminal and select an element
from the pull-down menu. You also can right-click the output terminal
and select the element from the Select Item shortcut menu.

For example, if you use the Unbundle function with the following cluster, it
has four output terminals that correspond to the four controls in the cluster.
You must know the cluster order so you can associate the correct Boolean
terminal of the unbundled cluster with the corresponding switch in the
cluster. In this example, the elements are ordered from top to bottom starting
with element 0. If you use the Unbundle by Name function, you can have an
arbitrary number of output terminals and access individual elements by
name in any order.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-20 ni.com

Figure 4-20. Unbundle and Unbundle By Name

Error Clusters
LabVIEW contains a custom cluster called the error cluster. LabVIEW uses
error clusters to pass error information. An error cluster contains the
following elements:

• status—Boolean value that reports TRUE if an error occurred.

• code—32-bit signed integer that identifies the error numerically.

• source—String that identifies where the error occurred.

Refer to Lesson 5, Debugging VIs, for more information about using error
clusters.

Lesson 4 Relating Data

© National Instruments Corporation 4-21 LabVIEW Introduction Course Manual

Exercise 4-2 Concept: Clusters

Goal
Create clusters on the front panel, reorder clusters, and use the cluster
functions to assemble and disassemble clusters.

Description
In this exercise, follow the instructions to experiment with clusters, cluster
order and cluster functions. The VI built has no practical applications, but is
useful for understanding cluster concepts.

1. Open a blank VI.

2. Save the VI as Cluster Experiment.vi in the C:\Exercises\
LabVIEW Basics I\Clusters directory.

In the following steps, you build a front panel similar to Figure 4-21.

Figure 4-21. Cluster Experiment VI Front Panel

3. Place a Stop button on the front panel.

4. Place a Numeric indicator on the front panel.

5. Place a Round LED on the front panel.

6. Rename the LED Boolean 2.

7. Create a cluster, containing a numeric, two toggle switches, and a slide.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-22 ni.com

❑ Place a cluster shell on the front panel.

❑ Place a numeric control in the cluster.

❑ Place two vertical toggle switches in the cluster.

❑ Rename the Boolean to Boolean 1.

❑ Place a horizontal fill slide in the cluster.

8. Create Modified Cluster, containing the same contents as Cluster, but
indicators instead of controls.

❑ Create a copy of Cluster.

❑ Relabel the copy Modified Cluster.

❑ Right-click the shell of Modified Cluster, and select Change to
Indicator from the shortcut menu.

9. Create Small Cluster, containing a Boolean indicator and a numeric
indicator.

❑ Create a copy of Modified Cluster.

❑ Relabel the copy Small Cluster.

❑ Delete the second toggle switch.

❑ Delete the horizontal fill slide indicator.

❑ Right-click Small Cluster and select Autosizing»Size to Fit.

❑ Relabel the numeric indicator to Slide value.

❑ Resize the cluster as needed.

10. Verify the cluster order of Cluster, Modified Cluster, and Small
Cluster.

❑ Right-click the boundary of Cluster and select Reorder Controls
in Cluster from the shortcut menu.

❑ Confirm the cluster order shown in Figure 4-22.

❑ Right-click the boundary of Modified Cluster and select Reorder
Controls in Cluster from the shortcut menu.

Lesson 4 Relating Data

© National Instruments Corporation 4-23 LabVIEW Introduction Course Manual

❑ Confirm the cluster orders shown in Figure 4-22. Modified Cluster
should have the same cluster order as Cluster.

❑ Right-click the boundary of Small Cluster and select Reorder
Controls in Cluster from the shortcut menu.

❑ Confirm the cluster orders shown in Figure 4-22.

Figure 4-22. Cluster Orders

In the following steps, build the block diagram shown in Figure 4-23.

Figure 4-23. Cluster Experiment VI Block Diagram

11. Place the While Loop from the Structures category of the Functions
palette on the block diagram.

12. Disassemble Cluster.

❑ Place the Unbundle function on the block diagram.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-24 ni.com

❑ Wire the Cluster to the input cluster of the Unbundle function to
resize the function automatically.

13. Assemble Small Cluster.

❑ Place the Bundle function on the block diagram.

❑ Wire the Bundle function as shown in Figure 4-23.

14. Assemble Modified Cluster.

❑ Place the Unbundle by Name function on the block diagram.

❑ Wire the Cluster to the Unbundle by Name function.

❑ Resize the Unbundle by Name function to have two output
terminals.

❑ Select Numeric in the first node, and Boolean 1 in the second node.
If a label name is not correct, use the Operating tool to select the
correct item.

❑ Place the Increment function on the block diagram.

❑ Wire the Numeric output of the Unbundle By Name function to the
Increment input. This function adds one to the value of Numeric.

❑ Place the Not function on the block diagram.

❑ Wire the Boolean 1 output of the Unbundle By Name function to the
x input of the Not function. This function returns the logical opposite
of the value of Boolean.

❑ Place the Bundle by Name function on the block diagram.

❑ Wire Cluster to the input cluster input.

❑ Resize this function to have two input terminals.

❑ Select Numeric in the first node, and Boolean 1 in the second node.
If a label name is not correct, use the Operating tool to select the
correct item.

❑ Wire the output of the Increment function to Numeric.

❑ Wire the output of the Not function to Boolean 1.

❑ Wire the output of the Bundle By Name function to the Modified
Cluster indicator.

Lesson 4 Relating Data

© National Instruments Corporation 4-25 LabVIEW Introduction Course Manual

15. Complete the block diagram and wire the objects as shown in Figure 4-
23.

16. Save the VI.

17. Display the front panel.

18. Run the VI.

19. Enter different values in Cluster and run the VI again. Notice how
values entered in Cluster affect the Modified Cluster and Small
Cluster indicators. Is this the behavior you expected?

20. Try changing the cluster order of Modified Cluster. Run the VI.
How did the changed order affect the behavior?

21. Close the VI. Do not save changes.

End of Exercise 4-2

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-26 ni.com

Exercise 4-3 Project: Weather Station UI VI

Goal
Create a cluster.

Scenario
In the weather station project, use a cluster to group the temperature data.

Design
Create a cluster constant on the block diagram containing the following:

Notice that the data placed in the cluster are the input and output data of the
temperature weather station. Using a cluster to pass the data simplifies the
block diagram.

Table 4-1. Temperature Cluster Constant

Name Datatype Default Value Order

Temperature Double-Precision Numeric 0 0

T Upper Limit Double-Precision Numeric 0 1

T Lower Limit Double-Precision Numeric 0 2

Warning String No Warning 3

Lesson 4 Relating Data

© National Instruments Corporation 4-27 LabVIEW Introduction Course Manual

Implementation

1. Open the weather station project.

❑ Select File»Open Project.

❑ Navigate to the C:\Exercises\LabVIEW_Basics_I\Course
Project directory, the open Weather Station.lvproj.

2. Open the user interface for the weather station project.

❑ In the Project Explorer window, double-click the Weather Station
UI.vi.

3. Open the block diagram.

In the following steps, build a block diagram similar to that shown in
Figure 4-24.

Figure 4-24. Weather Station UI Block Diagram

4. Create the Temperature constant.

❑ Place a Numeric Constant on the block diagram.

❑ Right-click the Numeric Constant and select
Respresentation»Double Precision.

❑ Right-click the Numeric Constant and select Visible Items»Label.

❑ Enter Temperature into the label.

5. Create the T Upper Limit constant.

❑ Press the <Ctrl> key and click and drag the Temperature constant to
make a copy.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-28 ni.com

❑ Rename the new constant T Upper Limit.

6. Create the T Lower Limit constant.

❑ Press the <Ctrl> key and click and drag the T Upper Limit constant
to make a copy.

❑ Rename the new constant T Lower Limit.

7. Create the Warning constant.

❑ Place a String Constant on the block diagram.

❑ Right-click the String Constant.

❑ Enter No Warning in the String Constant.

❑ Select Visible Items»Label.

❑ Enter Warning into the label.

8. Combine the constants into a cluster.

❑ Place a Bundle function on the block diagram.

❑ Expand the Bundle function to have four input nodes.

❑ Wire the constants to the Bundle function as shown in Figure 4-24.

9. Save the VI.

You continue building this block diagram in the next exercise.

End of Exercise 4-3

Lesson 4 Relating Data

© National Instruments Corporation 4-29 LabVIEW Introduction Course Manual

C. Type Definitions
Type definitions are frequently used to define custom arrays and clusters.

Custom Controls
Use custom controls and indicators to extend the available set of front panel
objects. You can create custom user interface components for an application
that vary cosmetically from built-in LabVIEW controls and indicators. You
can save a custom control or indicator you created in a directory or LLB and
use the custom control or indicator on other front panels. You also can create
an icon for the custom control or indicator and add it to the Controls palette.

Refer to the LabVIEW Help topic Creating Custom Controls, Indicators,
and Type Definitions for more information about creating and using custom
controls and type definitions.

Use the Control Editor window to customize controls and indicators. For
example, you can change the size, color, and relative position of the
elements of a control or indicator and import images into the control or
indicator.

You can display the Control Editor window in the following ways:

• Right-click a control or indicator on the front panel and select
Advanced»Customize from the shortcut menu.

• Use the Positioning tool to select a control or indicator on the front panel
and select Edit»Customize Control.

• Use the New dialog box.

 The Control Editor appears with the selected front panel object in its
window. The Control Editor has two modes, edit mode and customize mode.

The Control Editor window toolbar indicates whether you are in edit mode

or in customize mode . The Control Editor window opens in edit mode.

Click the Edit Mode button to change to customize mode. Click the
Customize Mode button to return to edit mode. You also can switch
between modes by selecting Operate»Change to Customize Mode or
Operate»Change to Edit Mode.

Use edit mode to change the size or color of a control or indicator and to
select options from its shortcut menu, just as you do in edit mode on a front
panel.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-30 ni.com

Use customize mode to make extensive changes to controls or indicators by
changing the individual parts of a control or indicator.

Edit Mode
In edit mode, you can right-click the control and manipulate its settings as
you would in the LabVIEW programming environment.

Customize Mode
In customize mode, you can move the individual components of the control
around with respect to each other. For a listing of what you can manipulate
in customize mode, select Window»Show Parts Window.

One way to customize a control is to change its type definition status. You
can save a control as a control, a type definition, or a strict type definition,
depending on the selection visible in the Type Def. Status ring. The control
option is the same as a control you would select from the Controls palette.
You can modify it in any way you need to, and each copy you make and
change retains its individual properties.

Saving Controls
After creating a custom control, you can save it for use later. By default,
controls saved on disk have a .ctl extension.

You also can use the Control Editor to save controls with your own default
settings. For example, you can use the Control Editor to modify the defaults
of a waveform graph, save it, and later recall it in other VIs.

Type Definition
Use type definitions and strict type definitions to link all the instances of a
custom control or indicator to a saved custom control or indicator file. You

1 Edit Mode
2 Type Definition Status

3 Text
4 Align Objects

5 Distribute Objects
6 Reorder Objects

1 Customize Mode
2 Type Definition Status

3 Text
4 Align Objects

5 Distribute Objects
6 Reorder Objects

1 2 3 4 5 6

1 2 3 4 5 6

Lesson 4 Relating Data

© National Instruments Corporation 4-31 LabVIEW Introduction Course Manual

can make changes to all instances of the custom control or indicator by
editing only the saved custom control or indicator file, which is useful if you
use the same custom control or indicator in several VIs.

When you place a custom control or indicator in a VI, no connection exists
between the custom control or indicator you saved and the instance of the
custom control or indicator in the VI. Each instance of a custom control or
indicator is a separate, independent copy. Therefore, changes you make to a
custom control or indicator file do not affect VIs already using that custom
control or indicator. If you want to link instances of a custom control or
indicator to the custom control or indicator file, save the custom control or
indicator as a type definition or strict type definition. All instances of a type
definition or a strict type definition link to the original file from which you
created them.

When you save a custom control or indicator as a type definition or strict
type definition, any data type changes you make to the type definition or
strict type definition affect all instances of the type definition or strict type
definition in all the VIs that use it. Also, cosmetic changes you make to a
strict type definition affect all instances of the strict type definition on the
front panel.

Type definitions identify the correct data type for each instance of a custom
control or indicator. When the data type of a type definition changes, all
instances of the type definition automatically update. In other words, the
data type of the instances of the type definition change in each VI where the
type definition is used. However, because type definitions identify only the
data type, only the values that are part of the data type update. For example,
on numeric controls, the data range is not part of the data type. Therefore,
type definitions for numeric controls do not define the data range for the
instances of the type definitions. Also, because the item names in ring
controls do not define the data type, changes to ring control item names in a
type definition do not change the item names in instances of the type
definition. However, if you change the item names in the type definition for
an enumerated type control, the instances update because the item names are
part of the data type. An instance of a type definition can have its own
unique label, description, default value, size, color, or style of control or
indicator, such as a knob instead of a slide.

If you change the data type in a type definition, LabVIEW converts the old
default value in instances of the type definition to the new data type, if
possible. LabVIEW cannot preserve the instance default value if the data
type changes to an incompatible type, such as replacing a numeric control
or indicator with a string control or indicator. When the data type of a type
definition changes to a data type incompatible with the previous type
definition, LabVIEW sets the default value of instances to the default value
for the new data type. For example, if you change a type definition from a

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-32 ni.com

numeric to a string type, LabVIEW replaces any default values associated
with the old numeric data type with empty strings.

A strict type definition forces everything about an instance to be identical to
the strict type definition, except the label, description, and default value. As
with type definitions, the data type of a strict type definition remains the
same everywhere you use the strict type definition. Strict type definitions
also define other values, such as range checking on numeric controls and the
item names in ring controls. The only VI Server properties available for
strict type definitions are those that affect the appearance of the control or
indicator, such as Visible, Disabled, Key Focus, Blinking, Position, and
Bounds.

You cannot prevent an instance of a strict type definition from automatically
updating unless you remove the link between the instance and the strict type
definition.

Type definitions and strict type definitions are typically used to create a
custom control using a cluster of many controls. If you need to add a new
control and pass a new value to every subVI, you can add the new control
to the custom control cluster, instead of having to add the new control to
each subVIs front panel and making new wires and terminals.

Lesson 4 Relating Data

© National Instruments Corporation 4-33 LabVIEW Introduction Course Manual

Exercise 4-4 Project: Weather Station CTL

Goal
Create a type-defined enumerated control.

Scenario
In the weather station project, you use an enumerated control to define the
states of the state machine. In this exercise create a type-define enum for the
enumerated control. Type-defining the control makes it easier to add more
states to the state machine in the future.

Design
The enumerated control contains the following data:

Notice that these items correspond to the states of the state transition
diagram designed for this project.

Table 4-2. Enumerated Control Data

Items Digital Display

Acquisition 0

Analysis 1

Data Log 2

Time Check 3

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-34 ni.com

Figure 4-25. Project State Transition Diagram

Initialize

Analysis

Acquisition

Datalog

Warning=TRUE

Warning=FALSE

Time Elapsed=TRUE
and

Stop=False

Stop=TRUE

Time Elapsed=FALSE
and

Stop=FALSE

Time Check

Lesson 4 Relating Data

© National Instruments Corporation 4-35 LabVIEW Introduction Course Manual

Implementation

1. Open the weather station project.

❑ Select File»Open Project.

❑ Navigate to the C:\Exercises\LabVIEW_Basics_I\Course
Project directory, the open Weather Station.lvproj.

2. Open the user interface for the weather station project.

❑ In the Project Explorer window, double-click the Weather Station
UI.vi.

3. Create an enumerated control on the front panel.

❑ Place an Enum anywhere on the front panel. You will remove this
control later in this exercise.

❑ Right-click the Enum and select Properties.

❑ Switch to the Edit Items tab.

❑ Enter the item names shown in Table 4-2. Figure 4-26 shows an
example of the Enum Properties dialog box, with the item names
entered. Be careful not to add any blank entries to the list.

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-36 ni.com

Figure 4-26. Enum Control Dialog Box

❑ Click OK to close the dialog box when you are finished.

4. Create a type definition of the enumerated control.

❑ Right-click the control and select Advanced»Customize. The
Control Editor window opens.

❑ Select Type Def. from the Type Definition Status pull down menu,
as shown in Figure 4-27.

Lesson 4 Relating Data

© National Instruments Corporation 4-37 LabVIEW Introduction Course Manual

Figure 4-27. Control Editor Window

❑ Select File»Save.

❑ Name the control Weather Station States.ctl in the
C:\Exercises\LabVIEW Basics I\Course Project\
Supporting Files directory.

❑ Select File»Close to close the Control Editor window.

❑ Click Yes when prompted to replace the original control.

5. Right-click the Enum. Notice that new options are available in the
shortcut menu allowing you to interact with the type-definition.

6. Remove the Enum control from the front panel by changing it to a
constant on the block diagram.

❑ Press <Ctrl-E> to open the block diagram.

❑ Right-click the Enum terminal and select Change to Constant.

Notice that you can now select between the states on the block diagram.
Also notice that the control on the front panel has been removed.

7. Save and close the VI.

You continue building this block diagram in later exercises.

End of Exercise 4-4

Lesson 4 Relating Data

© National Instruments Corporation 4-39 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. You can create an array of arrays.

a. True

b. False

2. You have two input arrays wired to a For Loop. Auto-indexing is
enabled on both tunnels. One array has 10 elements, the second array
has 5 elements. A value of 7 is wired to the Count terminal, as shown in
Figure 4-28. What is the value of the Iterations indicator after running
this VI?

Figure 4-28. What is the Value of the Iteration Indicator?

3. You customize a control, select Control from the Type Def. Status pull-
down menu, and save the control as a .ctl file. You then use an instance
of the custom control on your front panel. If you open the .ctl file and
modify the control, does the control on the front panel change?

a. Yes

b. No

4. You are inputting data that represents a circle. The circle data includes
an x position, a y position and a radius. All three pieces of data are
double precision. In the future, you might need to store the color of the
circle, represented as an integer. How should you represent the circle on
your front panel?

a. Three separate controls for the two positions and the radius.

b. A cluster containing all of the data.

c. A custom control containing a cluster.

d. A type definition containing a cluster.

e. An array with three elements.

Lesson 4 Relating Data

© National Instruments Corporation 4-41 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

1. You can create an array of arrays.

a. True

b. False

2. You have two input arrays wired to a For Loop. Auto-indexing is
enabled on both tunnels. One array has 10 elements, the second array
has 5 elements. A value of 7 is wired to the Count terminal, as shown in
the following figure. What is the value of the Iterations indicator after
running this VI?

Figure 4-29. What is the value of the Iteration indicator?

Value of Iterations = 4

LabVIEW does not exceed the array size. This helps to protect against
programming error. LabVIEW mathematical functions work the same
way—if you wire a 10 element array to the x input of the Add function,
and a 5 element array to the y input of the Add function, the output is a
5 element array.

Although the for loop runs 5 times, the iterations are zero based,
therefore the value of the Iterations indications is 4.

3. You customize a control, select Control from the Type Def. Status pull-
down menu, and save the control as a .ctl file. You then use an instance
of the custom control on your front panel. If you open the .ctl file and
modify the control, does the control on the front panel change?

a. Yes

b. No

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-42 ni.com

4. You are inputting data that represents a circle. The circle data includes
an x position, a y position and a radius. All three pieces of data are
double precision. In the future, you might need to store the color of the
circle, represented as an integer. How should you represent the circle on
your front panel?

a. Three separate controls for the two positions and the radius.

b. A cluster containing all of the data.

c. A custom control containing a cluster.

d. A type definition containing a cluster.

e. An array with three elements.

Lesson 4 Relating Data

© National Instruments Corporation 4-43 LabVIEW Introduction Course Manual

Notes

Lesson 4 Relating Data

LabVIEW Introduction Course Manual 4-44 ni.com

Notes

© National Instruments Corporation 5-1 LabVIEW Introduction Course Manual

5
Debugging VIs

To run a VI, you must wire all the subVIs, functions, and structures with the
correct data types for the terminals. Sometimes a VI produces data or runs
in a way you do not expect. You can use LabVIEW to configure how a VI
runs and to identify problems with block diagram organization or with the
data passing through the block diagram.

Topics

A. Correcting Broken VIs

B. Debugging Techniques

C. Undefined or Unexpected Data

D. Error Checking and Error Handling

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-2 ni.com

A. Correcting Broken VIs
If a VI does not run, it is a broken, or nonexecutable, VI. The Run button
appears broken, shown as follows, when the VI you are creating or editing
contains errors.

If the button still appears broken when you finish wiring the block diagram,
the VI is broken and cannot run.

Finding Causes for Broken VIs
Warnings do not prevent you from running a VI. They are designed to help
you avoid potential problems in VIs. Errors, however, can break a VI. You
must resolve any errors before you can run the VI.

Click the broken Run button or select View»Error List to find out why a
VI is broken. The Error list window lists all the errors. The Items with
errors section lists the names of all items in memory, such as VIs and
project libraries that have errors. If two or more items have the same name,
this section shows the specific application instance for each item. The
errors and warnings section lists the errors and warnings for the VI you
select in the Items with errors section. The Details section describes the
errors and in some cases recommends how to correct the errors. Click the
Help button to display a topic in the LabVIEW Help that describes the error
in detail and includes step-by-step instructions for correcting the error.

Click the Show Error button or double-click the error description to
highlight the area on the block diagram or front panel that contains the error.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-3 LabVIEW Introduction Course Manual

Figure 5-1. Example of the Error List Dialog Box

Common Causes of Broken VIs
The following list contains common reasons why a VI is broken while you
edit it:

• The block diagram contains a broken wire because of a mismatch of data
types or a loose, unconnected end.

Refer to the Correcting Broken Wires topic of the LabVIEW Help for
information about correcting broken wires.

• A required block diagram terminal is unwired.

Refer to the Using Wires to Link Block Diagram Objects topic of the
LabVIEW Help, for information about setting required inputs and
outputs.

• A subVI is broken or you edited its connector pane after you placed its
icon on the block diagram of the VI.

Refer to the Creating SubVIs topic of the LabVIEW Help for information
about subVIs.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-4 ni.com

B. Debugging Techniques
If a VI is not broken, but you get unexpected data, you can use the following
techniques to identify and correct problems with the VI or the block diagram
data flow:

• Wire the error in and error out parameters at the bottom of most built-in
VIs and functions. These parameters detect errors encountered in each
node on the block diagram and indicate if and where an error occurred.
You also can use these parameters in the VIs you build.

• To eliminate all VI warnings, select View»Error List and place a
checkmark in the Show Warnings checkbox to see all warnings for the
VI. Determine the causes and correct them in the VI.

• Triple-click the wire with the Operating tool to highlight its entire path
and to ensure that the wires connect to the proper terminals.

• Use the Context Help window to check the default values for each
function and subVI on the block diagram. VIs and functions pass default
values if recommended or optional inputs are unwired. For example, a
Boolean input might be set to TRUE if unwired.

• Use the Find dialog box to search for subVIs, text, and other objects to
correct throughout the VI.

• Select View»Browse Relationships»This VI's Hierarchy to find
unwired subVIs. Unlike unwired functions, unwired VIs do not always
generate errors unless you configure an input to be required. If you
mistakenly place an unwired subVI on the block diagram, it executes
when the block diagram does. Consequently, the VI might perform extra
actions.

• Use execution highlighting to watch the data move through the block
diagram.

• Single-step through the VI to view each action of the VI on the block
diagram.

• Use the Probe tool to observe intermediate data values and to check the
error output of VIs and functions, especially those performing I/O.

• Use breakpoints to pause execution, so you can single-step or insert
probes.

• Suspend the execution of a subVI to edit values of controls and
indicators, to control the number of times it runs, or to go back to the
beginning of the execution of the subVI.

• Determine if the data that one function or subVI passes is undefined.
This often happens with numbers. For example, at one point in the VI an
operation could have divided a number by zero, thus returning Inf
(infinity), whereas subsequent functions or subVIs were expecting
numbers.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-5 LabVIEW Introduction Course Manual

• If the VI runs more slowly than expected, confirm that you turned off
execution highlighting in subVIs. Also, close subVI front panels and
block diagrams when you are not using them because open windows can
affect execution speed.

• Check the representation of controls and indicators to see if you are
receiving overflow because you converted a floating-point number to an
integer or an integer to a smaller integer. For example, you might wire a
16-bit integer to a function that only accepts 8-bit integers. This causes
the function to convert the 16-bit integer to an 8-bit representation,
potentially causing a loss of data.

• Determine if any For Loops inadvertently execute zero iterations and
produce empty arrays.

• Verify you initialized shift registers properly unless you intend them to
save data from one execution of the loop to another.

• Check the cluster element order at the source and destination points.
LabVIEW detects data type and cluster size mismatches at edit time, but
it does not detect mismatches of elements of the same type.

• Check the node execution order.

• Check that the VI does not contain hidden subVIs. You inadvertently
might have hidden a subVI by placing one directly on top of another
node or by decreasing the size of a structure without keeping the subVI
in view.

• Check the inventory of subVIs the VI uses against the results of
View»Browse Relationships»This VI's SubVIs and View»Browse
Relationships»Unopened SubVIs to determine if any extra subVIs
exist. Also open the VI Hierarchy window to see the subVIs for a VI. To
help avoid incorrect results caused by hidden VIs, specify that inputs to
VIs are required.

Execution Highlighting
View an animation of the execution of the block diagram by clicking the
Highlight Execution button, shown as follows.

Execution highlighting shows the movement of data on the block diagram
from one node to another using bubbles that move along the wires. Use
execution highlighting in conjunction with single-stepping to see how data
values move from node to node through a VI.

Note Execution highlighting greatly reduces the speed at which the VI runs.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-6 ni.com

Figure 5-2. Example of Execution Highlighting in Use

Single-Stepping
Single-step through a VI to view each action of the VI on the block diagram
as the VI runs. The single-stepping buttons, shown as follows, affect
execution only in a VI or subVI in single-step mode.

Enter single-step mode by clicking the Step Over or Step Into button on the
block diagram toolbar. Move the cursor over the Step Over, Step Into, or
Step Out button to view a tip strip that describes the next step if you click
that button. You can single-step through subVIs or run them normally.

If you single-step through a VI with execution highlighting on, an execution
glyph, shown as follows, appears on the icons of the subVIs that are
currently running.

Probe Tools
Use the Probe tool, shown as follows, to check intermediate values on a wire
as a VI runs.

Use the Probe tool if you have a complicated block diagram with a series of
operations, any one of which might return incorrect data. Use the Probe tool

Lesson 5 Debugging VIs

© National Instruments Corporation 5-7 LabVIEW Introduction Course Manual

with execution highlighting, single-stepping, and breakpoints to determine
if and where data is incorrect. If data is available, the probe immediately
updates during single-stepping or when you pause at a breakpoint. When
execution pauses at a node because of single-stepping or a breakpoint, you
also can probe the wire that just executed to see the value that flowed
through that wire.

Types of Probes
You can check intermediate values on a wire when a VI runs by using a
generic probe, by using an indicator on the Controls palette to view the
data, by using a supplied probe, by using a customized supplied probe, or by
creating a new probe.

Generic
Use the generic probe to view the data that passes through a wire. Right-
click a wire and select Custom Probe»Generic Probe from the shortcut
menu to use the generic probe.

The generic probe displays the data. You cannot configure the generic probe
to respond to the data.

LabVIEW displays the generic probe when you right-click a wire and select
Probe, unless you already specified a custom or supplied probe for the data
type.

You can debug a custom probe similar to a VI. However, a probe cannot
probe its own block diagram, nor the block diagram of any of its subVIs.
When debugging probes, use the generic probe.

Using Indicators to View Data
You also can use an indicator to view the data that passes through a wire.
For example, if you view numeric data, you can use a chart within the probe
to view the data. Right-click a wire, select Custom Probe»Controls from
the shortcut menu, and select the indicator you want to use. You also can
click the Select a Control icon on the Controls palette and select any
custom control or type definition saved on the computer or in a shared
directory on a server. LabVIEW treats type definitions as custom controls
when you use them to view probed data.

If the data type of the indicator you select does not match the data type of
the wire you right-clicked, LabVIEW does not place the indicator on the
wire.

Supplied
Supplied probes are VIs that display comprehensive information about the
data that passes through a wire. For example, the VI Refnum Probe returns

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-8 ni.com

information about the VI name, the VI path, and the hex value of the
reference. You also can use a supplied probe to respond based on the data
that flows through the wire. For example, use an Error probe on an error
cluster to receive the status, code, source, and description of the error and
specify if you want to set a conditional breakpoint if an error or warning
occurs.

The supplied probes appear at the top of the Custom Probe shortcut menu.
Right-click a wire and select Custom Probe from the shortcut menu to
select a supplied probe. Only probes that match the data type of the wire you
right-click appear on the shortcut menu.

Refer to the Using Supplied Probes VI in the labview\examples\
general\probes.llb for an example of using supplied probes.

Custom
Use the Custom Probe Wizard to create a probe based on an existing probe
or to create a new probe. Right-click a wire and select Custom Probe»New
from the shortcut menu to display the Custom Probe Wizard. Create a probe
when you want to have more control over how LabVIEW probes the data
that flows through a wire. When you create a new probe, the data type of the
probe matches the data type of the wire you right-clicked. If you want to edit
the probe you created, you must open it from the directory where you saved
it.

After you select a probe from the Custom Probe shortcut menu, navigate to
it using the Select a Control palette option, or create a new probe using the
Custom Probe Wizard, that probe becomes the default probe for that data
type, and LabVIEW loads that probe when you right-click a wire and select
Probe from the shortcut menu. LabVIEW only loads probes that exactly
match the data type of the wire you right-click. That is, a double precision
floating-point numeric probe cannot probe a 32-bit unsigned integer wire
even though LabVIEW can convert the data.

Note If you want a custom probe to be the default probe for a particular data type, save
the probe in the user.lib_probes\default directory. Do not save probes in the
vi.lib_probes directory because LabVIEW overwrites those files when you
upgrade or reinstall.

Breakpoints
Use the Breakpoint tool, shown as follows, to place a breakpoint on a VI,
node, or wire on the block diagram and pause execution at that location.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-9 LabVIEW Introduction Course Manual

When you set a breakpoint on a wire, execution pauses after data passes
through the wire. Place a breakpoint on the block diagram to pause
execution after all nodes on the block diagram execute.

When a VI pauses at a breakpoint, LabVIEW brings the block diagram to
the front and uses a marquee to highlight the node or wire that contains the
breakpoint. When you move the cursor over an existing breakpoint, the
black area of the Breakpoint tool cursor appears white.

When you reach a breakpoint during execution, the VI pauses and the Pause
button appears red. You can take the following actions:

• Single-step through execution using the single-stepping buttons.

• Probe wires to check intermediate values.

• Change values of front panel controls.

• Click the Pause button to continue running to the next breakpoint or
until the VI finishes running.

Suspending Execution
Suspend execution of a subVI to edit values of controls and indicators, to
control the number of times the subVI runs before returning to the caller, or
to go back to the beginning of the execution of the subVI. You can cause all
calls to a subVI to start with execution suspended, or you can suspend a
specific call to a subVI.

To suspend all calls to a subVI, open the subVI and select Operate»
Suspend when Called. The subVI automatically suspends when another VI
calls it. If you select this menu item when single-stepping, the subVI does
not suspend immediately. The subVI suspends when it is called.

To suspend a specific subVI call, right-click the subVI node on the block
diagram and select SubVI Node Setup from the shortcut menu. Place a
checkmark in the Suspend when called checkbox to suspend execution
only at that instance of the subVI.

The VI Hierarchy window, which you display by selecting View»VI
Hierarchy, indicates whether a VI is paused or suspended. An arrow glyph,
shown as follows, indicates a VI that is running regularly or single-stepping.

A pause glyph, shown as follows, indicates a paused or suspended VI.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-10 ni.com

A green pause glyph, or a hollow glyph in black and white, indicates a VI
that pauses when called. A red pause glyph, or a solid glyph in black and
white, indicates a VI that is currently paused. An exclamation point glyph,
shown as follows, indicates that the subVI is suspended.

 A VI can be suspended and paused at the same time.

Determining the Current Instance of a SubVI
When you pause a subVI, the Call list pull-down menu on the toolbar lists
the chain of callers from the top-level VI down to the subVI. This list is not
the same list you see when you select Browse»This VI's Callers, which
lists all calling VIs regardless of whether they are currently running. Use the
Call list menu to determine the current instance of the subVI if the block
diagram contains more than one instance. When you select a VI from the
Call list menu, its block diagram opens, and LabVIEW highlights the
current instance of the subVI.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-11 LabVIEW Introduction Course Manual

C. Undefined or Unexpected Data
Undefined data, which are NaN (not a number) or Inf (infinity), invalidate
all subsequent operations. Floating-point operations return the following
two symbolic values that indicate faulty computations or meaningless
results:

• NaN (not a number) represents a floating-point value that invalid
operations produce, such as taking the square root of a negative number.

• Inf (infinity) represents a floating-point value that operations produce,
such as dividing a number by zero.

LabVIEW does not check for overflow or underflow conditions on integer
values. Overflow and underflow for floating-point numbers is in accordance
with IEEE 754, Standard for Binary Floating-Point Arithmetic.

Floating-point operations propagate NaN and Inf reliably. When you
explicitly or implicitly convert NaN or Inf to integers or Boolean values, the
values become meaningless. For example, dividing 1 by zero produces Inf.
Converting Inf to a 16-bit integer produces the value 32,767, which appears
to be a normal value.

Before you convert data to integer data types, use the Probe tool to check
intermediate floating-point values for validity. Check for NaN by wiring the
Comparison function Not A Number/Path/Refnum? to the value you
suspect is invalid.

Do not rely on special values such as NaN, Inf, or empty arrays to
determine if a VI produces undefined data. Instead, confirm that the VI
produces defined data by making the VI report an error if it encounters a
situation that is likely to produce undefined data.

For example, if you create a VI that uses an incoming array to auto-index a
For Loop, determine what you want the VI to do when the input array is
empty. Either produce an output error code, substitute defined data for the
value that the loop creates, or use a Case structure that does not execute the
For Loop if the array is empty.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-12 ni.com

D. Error Checking and Error Handling
No matter how confident you are in the VI you create, you cannot predict
every problem a user can encounter. Without a mechanism to check for
errors, you know only that the VI does not work properly. Error checking
tells you why and where errors occur.

Automatic Error Handling
Each error has a numeric code and a corresponding error message.

By default, LabVIEW automatically handles any error when a VI runs by
suspending execution, highlighting the subVI or function where the error
occurred, and displaying an error dialog box.

To disable automatic error handling for the current VI, select File»VI
Properties and select Execution from the Category pull-down menu. To
disable automatic error handling for any new, blank VIs you create, select
Tools»Options and select Block Diagram from the Category list. To
disable automatic error handling for a subVI or function within a VI, wire
its error out parameter to the error in parameter of another subVI or
function or to an error out indicator.

Manual Error Handling

You can choose other error handling methods. For example, if an I/O VI on
the block diagram times out, you might not want the entire application to
stop and display an error dialog box. You also might want the VI to retry for
a certain period of time. In LabVIEW, you can make these error handling
decisions on the block diagram of the VI.

Use the LabVIEW error handling VIs and functions on the Dialog & User
Interface palette and the error in and error out parameters of most VIs and
functions to manage errors. For example, if LabVIEW encounters an error,
you can display the error message in different kinds of dialog boxes. Use
error handling in conjunction with the debugging tools to find and manage
errors.

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

When you perform any kind of input and output (I/O), consider the
possibility that errors might occur. Almost all I/O functions return error
information. Include error checking in VIs, especially for I/O operations
(file, serial, instrumentation, data acquisition, and communication), and
provide a mechanism to handle errors appropriately.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-13 LabVIEW Introduction Course Manual

Use the LabVIEW error handling VIs, functions, and parameters to manage
errors. For example, if LabVIEW encounters an error, you can display the
error message in a dialog box. Or you can fix the error programmatically
then erase the error by wiring the error out output of the subVI or function
to the error in input of the Clear Errors VI. Use error handling in conjunction
with the debugging tools to find and manage errors. National Instruments
strongly recommends using error handling.

Error Clusters
Use the error cluster controls and indicators to create error inputs and
outputs in subVIs.

The error in and error out clusters include the following components of
information:

• status is a Boolean value that reports TRUE if an error occurred.

• code is a 32-bit signed integer that identifies the error numerically. A
nonzero error code coupled with a status of FALSE signals a warning
rather than a error.

• source is a string that identifies where the error occurred.

Error handling in LabVIEW follows the dataflow model. Just as data values
flow through a VI, so can error information. Wire the error information from
the beginning of the VI to the end. Include an error handler VI at the end of
the VI to determine if the VI ran without errors. Use the error in and error
out clusters in each VI you use or build to pass the error information through
the VI.

As the VI runs, LabVIEW tests for errors at each execution node. If
LabVIEW does not find any errors, the node executes normally. If
LabVIEW detects an error, the node passes the error to the next node
without executing that part of the code. The next node does the same thing,
and so on. At the end of the execution flow, LabVIEW reports the error.

Explain Error
When an error occurs, right-click within the cluster border and select
Explain Error from the shortcut menu to open the Explain Error dialog
box. The Explain Error dialog box contains information about the error.
The shortcut menu includes an Explain Warning option if the VI contains
warnings but no errors.

You also can access the Explain Error dialog box from the Help»Explain
Error menu.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-14 ni.com

VIs and functions return errors in one of two ways—with numeric error
codes or with an error cluster. Typically, functions use numeric error codes,
and VIs use an error cluster, usually with error inputs and outputs.

Using Case Structures for Error Handling
The following example is Case structure with an error cluster used to define
the cases.

Figure 5-3. No Error Case

Figure 5-4. Error Case

When you wire an error cluster to the selector terminal of a Case structure,
the case selector label displays two cases—Error and No Error—and the
border of the Case structure changes color—red for Error and green for No
Error. If an error occurs, the Case structure executes the Error
subdiagram.

When an error cluster is wired to the selection terminal, the Case structure
recognizes only the status Boolean of the cluster.

Using While Loops for Error Handling
You can wire an error cluster to the conditional terminal of a While Loop to
stop the iteration of the While Loop. When you wire the error cluster to the
conditional terminal, only the TRUE or FALSE value of the status

Lesson 5 Debugging VIs

© National Instruments Corporation 5-15 LabVIEW Introduction Course Manual

parameter of the error cluster is passed to the terminal. When an error
occurs, the While Loop stops.

When an error cluster is wired to the conditional terminal, the shortcut menu
items Stop if True and Continue if True change to Stop on Error and
Continue while Error.
In Figure 5-5, the error cluster and a stop button are used together to
determine when to stop the loop. This is the recommended method for
stopping most loops.

Figure 5-5. Stopping a While Loop

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-16 ni.com

Exercise 5-1 Concept: Debugging

Goal:
Use the debugging tools built into LabVIEW.

Description:
Complete the following steps to load a broken VI and correct the error.
Use single-stepping and execution highlighting to step through the VI.

1. Open and examine the Debug Exercise (Main) VI.

❑ Select File»Open.

❑ Open Debug Exercise (Main).vi in the C:\Exercises\
LabVIEW Basics I\Debugging directory.

The following front panel appears.

Figure 5-6. Debug Exercise (Main).vi Front Panel

❑ Notice the Run button on the toolbar appears broken, shown at left,
indicating that the VI is broken and cannot run.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-17 LabVIEW Introduction Course Manual

2. Display and examine the block diagram of Debug Exercise (Main) VI.

❑ Select Window»Show Block Diagram to display the block diagram
shown in Figure 5-7.

Figure 5-7. Debug Exercise (Main).vi Block Diagram

❑ The Random Number (0-1) function produces a random number
between 0 and 1.

❑ The Multiply function multiplies the random number by 10.0.

❑ The numeric constant is the number to multiply by the random
number.

❑ The Debug Exercise (Sub) VI, located in the C:\Exercises\
LabVIEW Basics I\Debugging\Supporting Files
directory, adds 100.0 and calculates the square root of the value.

3. Find and fix each error.

❑ Click the broken Run button to display the Error list window,
which lists all the errors.

❑ Select an error description in the Error list window. The Details
section describes the error and in some cases recommends how to
correct the error.

❑ Click the Help button to display a topic in the LabVIEW Help that
describes the error in detail and includes step-by-step instructions
for correcting the error.

❑ Click the Show Error button or double-click the error description to
highlight the area on the block diagram that contains the error.

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-18 ni.com

❑ Use the Error list window to fix each error.

4. Select File»Save to save the VI.

5. Display the front panel by clicking it or by selecting Window»Show
Front Panel.

6. Click the Run button to run the VI several times.

7. Select Window»Show Block Diagram to display the block diagram.

8. Animate the flow of data through the block diagram.

❑ Click the Highlight Execution button, shown at left, on the toolbar
to enable execution highlighting.

❑ Click the Step Into button, shown at left, to start single-stepping.
Execution highlighting shows the movement of data on the block
diagram from one node to another using bubbles that move along the
wires. Nodes blink to indicate they are ready to execute.

❑ Click the Step Over button, shown at left, after each node to step
through the entire block diagram. Each time you click the Step Over
button, the current node executes and pauses at the next node.

❑ Data appear on the front panel as you step through the VI. The VI
generates a random number and multiplies it by 10.0. The subVI
adds 100.0 and takes the square root of the result.

❑ When a blinking border surrounds the entire block diagram, click the
Step Out button, shown at left, to stop single-stepping through the
Debug Exercise (Main) VI.

9. Single-step through the VI and its subVI.

❑ Click the Step Into button to start single-stepping.

❑ When the Debug Exercise (Sub) VI blinks, click the Step Into
button. Notice the run button on the subVI.

❑ Display the Debug Exercise (Main) VI block diagram by clicking it.
A green glyph, shown at left, appears on the subVI icon on the
Debug Exercise (Main) VI block diagram, indicating that the subVI
is running.

❑ Display the Debug Exercise (Sub) VI block diagram by clicking it.

Lesson 5 Debugging VIs

© National Instruments Corporation 5-19 LabVIEW Introduction Course Manual

e. Click the Step Out button twice to finish single-stepping through
the subVI block diagram. The Debug Exercise (Main) VI block
diagram is active.

f. Click the Step Out button to stop single-stepping.

10. Use a probe to check intermediate values on a wire as a VI runs.

❑ Use the Probe tool, shown at left, to click any wire. The Probe
window appears.

LabVIEW numbers the Probe window automatically and displays
the same number in a glyph on the wire you clicked.

❑ Single-step through the VI again. The Probe window displays data
passed along the wire.

11. Place breakpoints on the block diagram to pause execution at that
location.

❑ Use the Breakpoint tool, shown at left, to click nodes or wires. Place
a breakpoint on the block diagram to pause execution after all nodes
on the block diagram execute.

❑ Click the Run button to run the VI. When you reach a breakpoint
during execution, the VI pauses and the Pause button on the toolbar
appears red.

❑ Click the Continue button, shown at left, to continue running to the
next breakpoint or until the VI finishes running.

❑ Use the Breakpoint tool to click the breakpoints you set and
remove them.

12. Click the Highlight Execution button to disable execution highlighting.

13. Select File»Close to close the VI and all open windows.

End of Exercise 5-1

Lesson 5 Debugging VIs

© National Instruments Corporation 5-21 LabVIEW Introduction Course Manual

Self Review: Quiz

1. How do you disable automatic error handling?

a. Select Operate»Disable Error Handling.

b. Enable execution highlighting.

c. Wire the error out cluster of a subVI to the error in cluster of another
subVI.

d. Place a checkmark in the Show Warnings checkbox of the Error
List dialog box.

2. Which of the following are the contents of the error cluster? (multiple
answer)

a. Status: Boolean

b. Error: String

c. Code: 32-bit integer

d. Source: String

Lesson 5 Debugging VIs

© National Instruments Corporation 5-23 LabVIEW Introduction Course Manual

Self Review: Quiz Answers

1. How do you disable automatic error handling?

a. Select Operate»Disable Error Handling.

b. Enable execution highlighting.

c. Wire the error out cluster of a subVI to the error in cluster of
another subVI.

d. Place a checkmark in the Show Warnings checkbox of the Error List
dialog box.

2. Which of the following are the contents of the error cluster? (multiple
answer)

a. Status: Boolean

b. Error: 32-bit integer

c. Code: 32-bit integer

d. Source: String

Lesson 5 Debugging VIs

LabVIEW Introduction Course Manual 5-24 ni.com

Notes

© National Instruments Corporation 6-1 LabVIEW Introduction Course Manual

6
Developing Modular Applications

This lesson describes how to develop modular applications. The power of
LabVIEW lies in the hierarchical nature of the VI. After you create a VI,
you can use it on the block diagram of another VI. There is no limit on the
number of layers in the hierarchy. Using modular programming helps you
manage changes and debug the block diagram quickly.

Topics
A. What is Modularity?

B. Icon and Connector Pane

C. Using SubVIs

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-2 ni.com

A. What is Modularity?
Modularity defines the degree to which your VI is composed of discrete
components such that a change to one component has minimal impact on
other components. These components are called modules, or subVIs.
Modularity increases the readability and reusability of your VIs.

A VI within another VI is called a subVI. A subVI corresponds to a
subroutine in text-based programming languages. When you double-click a
subVI, a front panel and block diagram appear, rather than a dialog box in
which you can configure options. The front panel includes controls and
indicators. The block diagram includes wires, front panel icons, functions,
possibly subVIs, and other LabVIEW objects that also might look familiar.

The upper right corner of the front panel and block diagram displays the
icon for the VI. This icon is the same as the icon that appears when you place
the VI on the block diagram.

As you create VIs, you might find that you perform a certain operation
frequently. Consider using subVIs or loops to perform that operation
repetitively. For example, the following block diagram contains two
identical operations.

Figure 6-1. Block Diagram with Two Identical Operations

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-3 LabVIEW Introduction Course Manual

Figure 6-2. Block Diagram with SubVIs for Identical Operations

The example calls the Temperature VI as a subVI twice on its block diagram
and functions the same as the previous block diagram.You also can reuse the
subVI in other VIs.

The following pseudo-code and block diagrams demonstrate the analogy
between subVIs and subroutines.

Function Code Calling Program Code

function average (in1,
in2, out)

{

out = (in1 + in2)/2.0;

}

main

{

average (point1, point2,
pointavg)

}

SubVI Block Diagram Calling VI Block Diagram

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-4 ni.com

B. Icon and Connector Pane
After you build a VI front panel and block diagram, build the icon and the
connector pane so you can use the VI as a subVI. The icon and connector
pane correspond to the function prototype in text-based programming
languages. Every VI displays an icon, such as the one shown as follows, in
the upper right corner of the front panel and block diagram windows.

An icon is a graphical representation of a VI. It can contain text, images, or
a combination of both. If you use a VI as a subVI, the icon identifies the
subVI on the block diagram of the VI. You can double-click the icon to
customize or edit it.
You also need to build a connector pane, shown as follows, to use the VI as
a subVI.

The connector pane is a set of terminals that correspond to the controls and
indicators of that VI, similar to the parameter list of a function call in text-
based programming languages. The connector pane defines the inputs and
outputs you can wire to the VI so you can use it as a subVI. A connector
pane receives data at its input terminals and passes the data to the block
diagram code through the front panel controls and receives the results at its
output terminals from the front panel indicators.

Creating an Icon
The default icon contains a number that indicates how many new VIs you
have opened since launching LabVIEW. Create custom icons to replace the
default icon by right-clicking the icon in the upper right corner of the front
panel or block diagram and selecting Edit Icon from the shortcut menu or by
double-clicking the icon in the upper right corner of the front panel.

You also can drag a graphic from anywhere in your file system and drop it
in the upper right corner of the front panel or block diagram. LabVIEW
converts the graphic to a 32 × 32 pixel icon.

Refer to the Icon Art Glossary at ni.com for standard graphics to use in a VI
icon.

Refer to the National Instruments Web site at ni.com/info and enter the info
code expnr7 for standard graphics to use in a VI icon.

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-5 LabVIEW Introduction Course Manual

Depending on the type of monitor you use, you can design a separate icon
for monochrome, 16-color, and 256-color mode. LabVIEW uses the
monochrome icon for printing unless you have a color printer.

Use the tools on the left side of the Icon Editor dialog box to create the icon
design in the editing area. The normal size image of the icon appears in the
appropriate box to the right of the editing area, as shown in Figure 6-3.

Figure 6-3. Icon Editor Window

Use the Edit menu to cut, copy, and paste images from and to the icon.
When you select a portion of the icon and paste an image, LabVIEW resizes
the image to fit into the selection area. You also can drag a graphic from
anywhere in your file system and drop it in the upper right corner of the front
panel or block diagram. LabVIEW converts the graphic to a 32 × 32 pixel
icon.

Use the Copy from option on the right side of the Icon Editor dialog box
to copy from a color icon to a black-and-white icon and vice versa. After
you select a Copy from option, click the OK button to complete the change.

Note If you do not draw a complete border around a VI icon, the icon background
appears transparent. When you select the icon on the block diagram, a selection marquee
appears around each individual graphic element in the icon.

Use the tools on the left side of the Icon Editor dialog box to create the icon
design in the editing area. The normal size image of the icon appears in the
appropriate box to the right of the editing area. The following tasks can be
performed with these tools:

Use the Pencil tool to draw and erase pixel by pixel.

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-6 ni.com

Use the Line tool to draw straight lines. To draw horizontal, vertical, and
diagonal lines, press the <Shift> key while you use this tool to drag the
cursor.

Use the Color Copy tool to copy the foreground color from an element in
the icon.

Use the Fill tool to fill an outlined area with the foreground color.

Use the Rectangle tool to draw a rectangular border in the foreground color.
Double-click this tool to frame the icon in the foreground color.

Use the Filled Rectangle tool to draw a rectangle with a foreground color
frame and filled with the background color. Double-click this tool to frame
the icon in the foreground color and fill it with the background color.

Use the Select tool to select an area of the icon to cut, copy, move, or make
other changes. Double-click this tool and press the <Delete> key to delete
the entire icon.

Use the Text tool to enter text into the icon. Double-click this tool to select
a different font. (Windows) The Small Fonts option works well in icons.

Use the Foreground/Background tool to display the current foreground and
background colors. Click each rectangle to display a color palette from
which you can select new colors.

Use the options on the right side of the editing area to perform the following
tasks:

• Show Terminals—Displays the terminal pattern of the connector pane

• OK—Saves the drawing as the icon and returns to the front panel

• Cancel—Returns to the front panel without saving any changes

The menu bar in the Icon Editor dialog box contains more editing options
such as Undo, Redo, Cut, Copy, Paste, and Clear.

Setting up the Connector Pane
Define connections by assigning a front panel control or indicator to each of
the connector pane terminals. To define a connector pane, right-click the
icon in the upper right corner of the front panel and select Show Connector
from the shortcut menu to display the connector pane. The connector pane
appears in place of the icon. When you view the connector pane for the first
time, you see a connector pattern. You can select a different pattern by right-
clicking the connector pane and selecting Patterns from the shortcut menu.

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-7 LabVIEW Introduction Course Manual

Each rectangle on the connector pane represents a terminal. Use the
rectangles to assign inputs and outputs. The default connector pane pattern
is 4 × 2 × 2 × 4. If you anticipate changes to the VI that would require a new
input or output, keep the default connector pane pattern to leave extra
terminals unassigned.

The following front panel has four controls and one indicator, so LabVIEW
displays four input terminals and one output terminal on the connector pane.

Figure 6-4. Slope VI Front Panel

Selecting and Modifying Terminal Patterns
Select a different terminal pattern for a VI by right-clicking the connector
pane and selecting Patterns from the shortcut menu. For example, you can
select a connector pane pattern with extra terminals. You can leave the extra
terminals unconnected until you need them. This flexibility enables you to
make changes with minimal effect on the hierarchy of the VIs.

You also can have more front panel controls or indicators than terminals.

A solid border highlights the pattern currently associated with the icon. You
can assign up to 28 terminals to a connector pane.

The most commonly used pattern is shown at left. This pattern is used as a
standard to assist in simplifying wiring.

Figure 6-5 shows an example of the standard layout used for terminal
patterns. The top inputs and outputs are commonly used for passing
references and the bottom inputs and outputs are used for error handling.

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-8 ni.com

Figure 6-5. Example Terminal Pattern Layout

Note Assigning more than 16 terminals to a VI can reduce readability and usability.

Assigning Terminals to Controls and Indicators
After you select a pattern to use for the connector pane, you must define
connections by assigning a front panel control or indicator to each of the
connector pane terminals. When you link controls and indicators to the
connector pane, place inputs on the left and outputs on the right to prevent
complicated, unclear wiring patterns in your VIs.

To assign a terminal to a front panel control or indicator, click a terminal of
the connector pane, then click the front panel control or indicator you want
to assign to that terminal. Click an open space on the front panel. The
terminal changes to the data type color of the control to indicate that you
connected the terminal.

You also can select the control or indicator first and then select the terminal.

Note Although you use the Wiring tool to assign terminals on the connector pane to
front panel controls and indicators, no wires are drawn between the connector pane and
these controls and indicators.

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-9 LabVIEW Introduction Course Manual

C. Using SubVIs
To place a subVI on the block diagram, click the Select a VI button on the
Functions palette. Navigate to the VI you want to use as a subVI and and
double-click to place it on the block diagram.

You also can place an open VI on the block diagram of another open VI. Use
the Positioning tool to click the icon in the upper right corner of the front
panel or block diagram of the VI you want to use as a subVI and drag the
icon to the block diagram of the other VI.

Opening and Editing SubVIs
To display the front panel of a subVI from the calling VI, use the Operating
or Positioning tool to double-click the subVI on the block diagram. You also
can select View»Browse Relationships»This VI’s SubVIs. To display the
block diagram of a subVI from the calling VI, press the <Ctrl> key and use
the Operating or Positioning tool to double-click the subVI on the block
diagram.

You can edit a subVI by using the Operating or Positioning tool to double-
click the subVI on the block diagram. When you save the subVI, the
changes affect all calls to the subVI, not just the current instance.

Setting Required, Recommended, and Optional Inputs and Outputs
 In the Context Help window, the labels of required terminals appear bold,
recommended terminals appear as plain text, and optional terminals appear
dimmed. The labels of optional terminals do not appear if you click the Hide
Optional Terminals and Full Path button, shown as follows, in the
Context Help window.

You can designate which inputs and outputs are required, recommended,
and optional to prevent users from forgetting to wire subVI terminals.

Right-click a terminal in the connector pane and select This Connection Is
from the shortcut menu. A checkmark indicates the terminal setting. Select
Required, Recommended, or Optional.

For terminal inputs, required means that the block diagram on which you
placed the subVI will be broken if you do not wire the required inputs.
Required is not available for terminal outputs. For terminal inputs and
outputs, recommended or optional means that the block diagram on which
you placed the subVI can execute if you do not wire the recommended or

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-10 ni.com

optional terminals. If you do not wire the terminals, the VI does not generate
any warnings.

Inputs and outputs of VIs in vi.lib are already marked as Required,
Recommended, or Optional. LabVIEW sets inputs and outputs of VIs you
create to Recommended by default. Set a terminal setting to required only
if the VI must have the input or output to run properly.

Creating a SubVI from an existing VI
You can simplify the block diagram of a VI by converting sections of the
block diagram into subVIs. Convert a section of a VI into a subVI by using
the Positioning tool to select the section of the block diagram you want to
reuse and selecting Edit»Create SubVI. An icon for the new subVI
replaces the selected section of the block diagram. LabVIEW creates
controls and indicators for the new subVI, automatically configures the
connector pane based on the number of control and indicator terminals you
selected, and wires the subVI to the existing wires.

Figure 6-6 shows how to convert a selection into a subVI.

Figure 6-6. Creating a new SubVI

The new subVI uses a default pattern for the connector pane and a default
icon. Double-click the subVI to edit the connector pane and icon, and to
save the subVI.

Note Do not select more than 28 objects to create a subVI because 28 is the maximum
number of connections on a connector pane.If your front panel contains more than
28 controls and indicators that you want to use programmatically, group some of them
into a cluster and assign the cluster to a terminal on the connector pane.

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-11 LabVIEW Introduction Course Manual

Exercise 6-1 Project: Determine Warnings VI

Goal
Create the icon and connector pane for a VI so that the VI can be used as a
subVI.

Scenario
You have created a VI that determines a warning string based on the inputs
given. Create an icon and a connector pane so that this VI can be used as a
subVI in the Weather Station project.

Design
The SubVI contains the following inputs and outputs:

Use the standard connector pane, shown at left, to assure room for future
expansion. Add an error input and error output to the VI so that the code runs
if there is no error, but does not run if there is an error.

Table 6-1. Determine Warnings SubVI inputs and outputs

Inputs Outputs

Current Temp Warning Text

Max Temp Warning?

Min Temp

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-12 ni.com

Implementation

1. Open the Determine Warnings VI.

❑ Select File»Open Project.

❑ Open the Weather Station.lvproj in the C:\Exercises\
LabVIEW_Basics_I\Course Project directory.

❑ Double-click the Determine Warnings.vi in the Project
Explorer window to open the VI.

2. Add an error input and an error output to the VI.

❑ Place an Error In 3D.ctl on the front panel.

❑ Place an Error Out 3D.ctl on the front panel.

3. Select a connector pane pattern for the VI.

❑ Right-click the icon in the upper-right corner of the window and
select Show Connector from the shortcut menu.

❑ Right-click the icon in the upper-right corner of the window and
select Patterns, from the shortcut menu and choose the pattern
shown at left.

4. Connect the inputs and outputs to the connector as shown in Figure 6-7.

Figure 6-7. Connector Pane Connections for Determine Warnings VI

❑ Using the wiring tool, click the upper-left terminal of the connector
pane.

❑ Click the corresponding front panel control, Current Temp.

Notice that the connector pane terminal fills in with a color to match the
data type of the control connected to it.

1 Connections 2 Connector Pane

1 2

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-13 LabVIEW Introduction Course Manual

❑ Click the next terminal in the connector pane.

❑ Click the corresponding front panel control, Max Temp.

❑ Continue wiring the connector pane until all controls and indicators
are wired, and the Context Help window matches that shown in
Figure 6-7.

5. Create an icon.

❑ Right-click the connector pane and select Edit Icon. The Icon Editor
window opens.

❑ Use the tools in the Icon Editor window to create an icon. Make the
icon as simple or as complex as you want, however, it should be
representative of the function of the VI. Figure 6-8 shows a simple
example of an icon for this VI.

Figure 6-8. Sample Warning Icon

❑ Click OK when you are finished to close the Icon Editor window.

Tip Double-click the selection tool to select the existing graphic. Press <Delete> to
delete the graphic.

Tip Double-click the text tool to modify fonts. You can select Small Fonts to choose
fonts smaller than 9 points in size.

6. Right-click the connector pane and select Show Icon from the shortcut
menu to return to Icon view.

7. Save the VI.

8. Switch to the block diagram.

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-14 ni.com

9. Set the VI to execute if no error occurs, and not execute if an error
occurs.

Figure 6-9. No Error Case of Determine Warnings VI

❑ Surround the block diagram code with a Case structure as shown in
Figure 6-9. Leave the Warning Text and Warning? indictors outside
of the Case structure.

❑ Place the error in terminal to the left of the Case structure.

❑ Place the error out terminal to the right of the Case structure.

❑ Wire the error in terminal to the case selector terminal.

❑ Confirm that the block diagram is in the No Error case. If it is not,
switch to the case containing the code, right-click the Case structure
and select Make this Case No Error from the shortcut menu.

❑ Wire the error cluster through the Case structure to the error out
terminal as shown in Figure 6-9.

❑ Switch to the Error case.

❑ Wire the error cluster through the case to the error out tunnel.

❑ Right-click the Warning? tunnel and select Create»Constant from
the shortcut menu.

❑ Use the Operating tool to change the constant to True.

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-15 LabVIEW Introduction Course Manual

❑ Right-click the Warning Text tunnel and select Create»Constant
from the shortcut menu.

❑ Enter Error in the constant.

❑ Confirm that you have completed the Error case as shown in
Figure 6-10.

Figure 6-10. Error Case of Determine Warnings VI

If an error enters the VI, the VI outputs Error in Warning Text, and True in
Warning? and passes out the error. If an error does not enter the VI, the VI
operates as originally designed.

10. Save and close the VI.

Testing
Use a blank VI to test the subVI.

1. Open a blank VI.

2. Open the block diagram.

3. Place the subVI on the block diagram of the blank test VI.

❑ Switch to the Project Explorer window.

❑ Select the Determine Warnings.vi in the Project Explorer
window.

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-16 ni.com

❑ Drag and drop the Determine Warnings.vi to the block diagram
of the blank test VI.

4. Create controls and indicators for each item in the subVI.

❑ Right-click the Current Temp terminal and select Create»Control
from the shortcut menu.

❑ Right-click the Max Temp terminal and select Create»Control
from the shortcut menu.

❑ Right-click the Min Temp terminal and select Create»Control
from the shortcut menu.

❑ Right-click the Warning Text terminal and select
Create»Indicator from the shortcut menu.

❑ Right-click the Warning? terminal and select Create»Indicator
from the shortcut menu.

5. Switch to the front panel.

6. Enter test values in Current Temp, Max Temp and Min Temp.

7. Run the VI.

8. After you have finished testing, close the test VI. You do not need to
save the test VI.

End of Exercise 6-1

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-17 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. On a subVI, which setting causes an error if the terminal is not wired?

a. Required

b. Recommended

c. Optional

2. You must create an icon to use a VI as a subVI.

a. True

b. False

Lesson 6 Developing Modular Applications

© National Instruments Corporation 6-19 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

1. On a subVI, which setting causes an error if the terminal is not wired?

a. Required

b. Recommended

c. Optional

2. You must create an icon to use a VI as a subVI.

a. True

b. False: you should customize the icon, but the default icon is
enough for functionality.

Lesson 6 Developing Modular Applications

LabVIEW Introduction Course Manual 6-20 ni.com

Notes

© National Instruments Corporation 7-1 LabVIEW Introduction Course Manual

7
Measurement Fundamentals

This lesson explains concepts that are critical to acquiring and generating
signals effectively. These concepts focus on understanding the parts of your
measurement system that exist outside of the computer. You will learn about
transducers, signal sources, signal conditioning, grounding of your
measurement system, and ways to increase the quality of your measurement
acquisition. This lesson provides basic understanding of these concepts.

Topics

A. Computer-Based Measurement Systems

B. Measurement Concepts

C. Increasing Measurement Quality

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-2 ni.com

A. Computer-Based Measurement Systems
The fundamental task of all measurement systems is the measurement
and/or generation of real-world physical signals. Measurement devices help
you acquire, analyze, and present the measurements you take.

An example of a measurement system is shown in Figure 7-1. Before a
computer-based measurement system can measure a physical signal, such as
temperature, a sensor or transducer must convert the physical signal into an
electrical one, such as voltage or current.You may need to condition the
electrical signal before being measuring the signal. Signal conditioning may
include filtering to remove noise or applying gain/attenuation to the signal
to bring it into an acceptable measurement range. After conditioning the
signal, measure the signal and then the measurement is communicated to the
computer.

This course teaches two different methods of communicating the measured
electrical signal to the computer: with a data acquisition (DAQ) board or
with a stand-alone instrument (instrument control). Software controls the
overall system, which includes acquiring the raw data, analyzing the data,
and presenting the results. With these building blocks, you can obtain the
physical phenomenon you want to measure into the computer for analysis
and presentation.

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-3 LabVIEW Introduction Course Manual

Figure 7-1. Measurement System Overview

Driver Engines/API Driver Engines/API

NI-488.2, NI-VISA, NI-SerialNI-DAQmx, NI-DAQmx Base

+
mV
–

+
HV
–

®

MAINFRAME

SCXI

Physical Phenomenon
Light, Pressure, Temperature, etc.

Application Software
LabVIEW, LabWindows/CVI, Measurement Studio, or Other Programming Environments

Data Acquisition (DAQ) Board Stand-alone Instrument

GPIB Board/Seral Port/Other Communication

Sensors and Transducers

+
V–

+
–

Signal Conditioning Signal Conditioning

SC-2345

8

7

6

ON

STANDBY

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-4 ni.com

B. Measurement Concepts
This section introduces you to concepts you should be familiar with before
taking measurements with DAQ device and instruments.

Signal Acquisition
Signal acquisition is the process of converting physical phenomena into data
the computer can use. A measurement starts with using a transducer to
convert a physical phenomenon into an electrical signal. Transducers can
generate electrical signals to measure such things as temperature, force,
sound, or light. Table 7-1 lists some common transducers.

Signal Sources
Analog input acquisitions use grounded and floating signal sources.

Grounded Signal Sources
A grounded signal source is one in which the voltage signals are referenced
to a system ground, such as the earth or a building ground, as shown in
Figure 7-2. Because such sources use the system ground, they share a
common ground with the measurement device. The most common examples

Table 7-1. Phenomena and Transducers

Phenomena Transducer

Temperature Thermocouples
Resistance temperature detectors (RTDs)
Thermistors
Integrated circuit sensors

Light Vacuum tube photosensors
Photoconductive cells

Sound Microphones

Force and pressure Strain gages
Piezoelectric transducers
Load cells

Position
(displacement)

Potentiometers
Linear voltage differential transformers (LVDT)
Optical encoders

Fluid flow Head meters
Rotational flowmeters
Ultrasonic flowmeters

pH pH electrodes

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-5 LabVIEW Introduction Course Manual

of grounded sources are devices that plug into a building ground through
wall outlets, such as signal generators and power supplies.

Figure 7-2. Grounded Signal Source

Note The grounds of two independently grounded signal sources generally are not at the
same potential. The difference in ground potential between two instruments connected to
the same building ground system is typically 10 mV to 200 mV. The difference can be
higher if power distribution circuits are not properly connected. This causes a
phenomenon known as a ground loop.

Floating Signal Sources
In a floating signal source, the voltage signal is not referenced to any
common ground, such as the earth or a building ground, as shown in
Figure 7-3. Some common examples of floating signal sources are batteries,
thermocouples, transformers, and isolation amplifiers. Notice in Figure 7-3
that neither terminal of the source is connected to the electrical outlet
ground as in Figure 7-2. Each terminal is independent of the system ground.

Figure 7-3. Floating Signal Source

Signal Conditioning
Signal conditioning is the process of measuring and manipulating signals to
improve accuracy, isolation, filtering, and so on. Many stand-alone
instruments and DAQ devices have built-in signal conditioning. Signal
conditioning also can be applied externally, by designing a circuit to
condition the signal or by using devices specifically made for signal
conditioning. National Instruments has SCXI devices and other devices that
are designed for this purpose. Throughout this section, different DAQ and
SCXI devices illustrate signal conditioning topics.

Vs

Ground

+

–

Vs

Ground

+

–

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-6 ni.com

To measure signals from transducers, you must convert them into a form a
measurement device can accept. For example, the output voltage of most
thermocouples is very small and susceptible to noise. Therefore, you might
need to amplify the thermocouple output before you digitize it. This
amplification is a form of signal conditioning. Common types of signal
conditioning include amplification, linearization, transducer excitation, and
isolation.

Figure 7-4 shows some common types of transducers and signals and the
signal conditioning each requires.

Figure 7-4. Common Transducers and Signal Conditioning Types

Amplification
Amplification is the most common type of signal conditioning. Amplifying
electrical signals improves accuracy in the resulting digitized signal and
reduces the effects of noise.

Signals should be amplified as close to the signal source as possible. By
amplifying a signal near the device, any noise that attached to the signal is
also amplified. Amplifying near the signal source result in the largest
signal-to-noise ratio (SNR). For the highest possible accuracy, amplify the
signal so the maximum voltage range equals the maximum input range of
the analog-to-digital converter (ADC).

Transducers/Signals

Thermocouples

RTDs

Strain Gages

Common Mode
or High Voltages

Loads Requiring AC Switching
or Large Current Flow

Signals with High
Frequency Noise

Signal Conditioning

Current Excitation, Four-Wire
and Three-Wire Configuration,

Linearization

Amplification, Linearization, and
Cold-Junction Compensation

Voltage Excitation, Bridge
Configuration, and Linearization

Isolation Amplifiers
(Optical Isolation)

Electromechanical Relays
or Solid-State Relays

Lowpass Filters

DAQ Device

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-7 LabVIEW Introduction Course Manual

Figure 7-5. Signal Amplification

If you amplify the signal at the DAQ device while digitizing and measuring
the signal, noise might have entered the lead wire, which decreases SNR.
However, if you amplify the signal close to the signal source with a SCXI
module, noise has a less destructive effect on the signal, and the digitized
representation is a better reflection of the original low-level signal. Refer to
the National Instruments Web site at ni.com/info and enter the info code
exd2hc for more information about analog signals.

Linearization
Many transducers, such as thermocouples, have a nonlinear response to
changes in the physical phenomena you measure. LabVIEW can linearize
the voltage levels from transducers so you can scale the voltages to the
measured phenomena. LabVIEW provides scaling functions to convert
voltages from strain gages, RTDs, thermocouples, and thermistors.

Transducer Excitation
Signal conditioning systems can generate excitation, which some
transducers require for operation. Strain gages and RTDs require external
voltage and currents, respectively, to excite their circuitry into measuring
physical phenomena. This type of excitation is similar to a radio that needs
power to receive and decode audio signals.

Isolation
Another common way to use signal conditioning is to isolate the transducer
signals from the computer for safety purposes.

Caution When the signal you monitor contains large voltage spikes that could damage
the computer or harm the operator, do not connect the signal directly to a DAQ device
without some type of isolation.

You also can use isolation to ensure that differences in ground potentials do
not affect measurements from the DAQ device. When you do not reference
the DAQ device and the signal to the same ground potential, a ground loop

ADC

DAQ Device

Instrumentaion
Amplifier

MUX

Low-Level
Signal External

Amplifier

Lead
Wires

Noise

+

–

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-8 ni.com

can occur. Ground loops can cause an inaccurate representation of the
measured signal. If the potential difference between the signal ground and
the DAQ device ground is large, damage can occur to the measuring system.
Isolating the signal eliminates the ground loop and ensures that the signals
are accurately measured.

Measurement Systems
You configure a measurement system based on the hardware you use and the
measurement you take.

Differential Measurement Systems
Differential measurement systems are similar to floating signal sources in
that you make the measurement with respect to a floating ground that is
different from the measurement system ground. Neither of the inputs of a
differential measurement system are tied to a fixed reference, such as the
earth or a building ground. Handheld, battery-powered instruments and
DAQ devices with instrumentation amplifiers are examples of differential
measurement systems.

A typical National Instruments device uses an implementation of an
eight-channel differential measurement systems as shown in Figure 7-6.
Using analog multiplexers in the signal path increases the number of
measurement channels when only one instrumentation amplifier exists.
In Figure 7-6, the AIGND (analog input ground) pin is the measurement
system ground.

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-9 LabVIEW Introduction Course Manual

Figure 7-6. Typical Differential Measurement System

Referenced and Non-Referenced Single Ended
Referenced and non-referenced single-ended measurement systems are
similar to grounded sources in that you make the measurement with respect
to a ground. A referenced single-ended measurement system measures
voltage with respect to the ground, AIGND, which is directly connected to
the measurement system ground. Figure 7-7 shows a 16-channel referenced
single-ended measurement system.

+

CH0–

CH1–

CH2–

CH7–

MUX

Instrumentation
Amplifier

AIGND

–

CH0+

CH1+

CH2+

CH7+

MUX

Vm

+

–

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-10 ni.com

Figure 7-7. Typical Referenced Single-Ended (RSE) Measurement System

DAQ devices often use a non-referenced single-ended (NRSE)
measurement technique, or pseudodifferential measurement, which is
a variant of the referenced single-ended measurement technique. Figure 7-8
shows a NRSE system.

Figure 7-8. Typical Non-Referenced Single-Ended (NRSE) Measurement System

In a NRSE measurement system, all measurements are still made with
respect to a single-node analog input sense (AISENSE on E Series devices),
but the potential at this node can vary with respect to the measurement
system ground (AIGND). A single-channel NRSE measurement system is
the same as a single-channel differential measurement system.

+
Instrumentation

Amplifier

AIGND

–

CH0

CH1

CH2

CH15

MUX

Vm

+

–

AISENSE

+
Instrumentation

Amplifier

AIGND

–

CH0+

CH1+

CH2+

CH15+

MUX

Vm

+

–

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-11 LabVIEW Introduction Course Manual

Signal Sources and Measurement Systems Summary
Figure 7-9 summarizes ways to connect a signal source to a measurement
system.

Figure 7-9. Signal Source and Measurement Systems Summary

+
–

+

–
V1

ACH

AISENSE

AIGND

+
–

+

–
V1

ACH

AISENSE

AIGNDR

See text for information on bias resistors.

+
–

+

–
V1

ACH

AIGND
+
–

+

–
V1

ACH

+ Vg –

AIGND

Ground-loop losses, Vg, are added to
measured signal.

NOT RECOMMENDED

+
–

+

–
V1

ACH(+)

ACH(–)

AIGND

+
–

+

–
V1

ACH(+)

ACH(–)

AIGND

R

See text for information on bias resistors.

Signal Source Type

Floating Signal Source
(Not Connected to Building Ground)

Grounded Signal Source

Examples
• Ungrounded Thermocouples
• Signal Conditioning with

Isolated Outputs
• Battery Devices

Examples
• Plug-in Instruments with

Nonisolated OutputsInput

Differential
(DIFF)

Single-Ended —
Ground

Referenced
(RSE)

Single-Ended —
Nonreferenced

(NRSE)

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-12 ni.com

C. Increasing Measurement Quality
When you design a measurement system, you may find that the
measurement quality does not meet your expectations. You might want to
record the smallest possible change in a voltage level. Perhaps you cannot
tell if a signal is a triangle wave or a sawtooth wave and would like to see a
better representation of the shape of a signal. Often, you want to reduce the
noise in the signal. Methods for achieving these three increases in quality
are introduced in this section.

Achieving Smallest Detectable Change
The following reasons affect achieving the smallest detectable change in
voltage:

• The resolution and range of the ADC

• The gain applied by the instrumentation amplifier

• The combination of the resolution, range, and gain to calculate a
property called the code width value

Resolution
The number of bits used to represent an analog signal determines the
resolution of the ADC. The resolution on a DAQ device is similar to
the marks on a ruler. The more marks a ruler has, the more precise the
measurements are. The higher the resolution is on a DAQ device, the higher
the number of divisions into which a system can break down the ADC range,
and therefore, the smaller the detectable change. A 3-bit ADC divides the
range into 23 or eight divisions. A binary or digital code between 000 and
111 represents each division. The ADC translates each measurement of the
analog signal to one of the digital divisions. The following illustration shows
a 5 kHz sine wave digital image obtained by a 3-bit ADC. The digital signal
does not represent the original signal adequately because the converter has
too few digital divisions to represent the varying voltages of the analog
signal. However, increasing the resolution to 16 bits to increase the ADC
number of divisions from eight (23) to 65,536 (216) allows the 16-bit ADC
to obtain an extremely accurate representation of the analog signal.

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-13 LabVIEW Introduction Course Manual

Figure 7-10. 3-Bit and 16-Bit Resolution Example

Device Range
Range refers to the minimum and maximum analog signal levels that the
ADC can digitize. Many DAQ devices feature selectable ranges (typically
0 to 10 V or –10 to 10 V), so you can match the ADC range to that of the
signal to take best advantage of the available resolution to accurately
measure the signal. For example, in the following illustration, the 3-bit ADC
in chart 1 has eight digital divisions in the range from 0 to 10 V, which is a
unipolar range. If you select a range of –10 to 10 V, which is a bipolar range,
as shown in chart 2, the same ADC separates a 20 V range into eight
divisions. The smallest detectable voltage increases from 1.25 to 2.50 V, and
the right chart is a much less accurate representation of the signal.

Figure 7-11. Range Example

Amplification
Amplification or attenuation of a signal can occur before the signal is
digitized to improve the representation of the signal. By amplifying or
attenuating a signal, you can effectively decrease the input range of an ADC
and thus allow the ADC to use as many of the available digital divisions as
possible to represent the signal.

1 Range = 0 to 10 V 2 Range = –10 to 10 V

0 50 100 150 200

A
m

pl
itu

de
 (

V
)

111

110

101

100

011

010

001

000

8.75
10.00

7.50
6.25
5.00
3.75
2.50
1.25

0

16-bit

3-bit

Time (s)

0 50 100 150 200

A
m

pl
itu

de
 (

V
)

111

110

101

100

011

010

001

000

8.75
10.00

7.50
6.25
5.00
3.75
2.50
1.25

0
0 50 100 150 200

A
m

pl
itu

de
 (

V
)

111

110

101

100

011

010

001

000

7.50
10.00

5.00
2.50

0
–2.50
–5.00
–7.50

–10.00

1 2

Time (s) Time (s)

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-14 ni.com

For example, Figure 7-12 shows the effects of applying amplification to a
signal that fluctuates between 0 and 5 V using a 3-bit ADC and a range of 0
to 10 V. With no amplification, or gain = 1, the ADC uses only four of the
eight divisions in the conversion. By amplifying the signal by two before
digitizing, the ADC uses all eight digital divisions, and the digital
representation is much more accurate. Effectively, the device has an
allowable input range of 0 to 5 V because any signal above 5 V when
amplified by a factor of two makes the input to the ADC greater than 10 V.

Figure 7-12. Amplification Example

The range, resolution, and amplification available on a DAQ device
determine the smallest detectable change in the input voltage. This change
in voltage represents one least significant bit (LSB) of the digital value and
is also called the code width.

Code Width
Code width is the smallest change in a signal that a system can detect.
Code width is calculated using the following formula where C is code
width, D is device input range, and R is bits of resolution:

Device input range is a combination of the gain applied to the signal and the
input range of the ADC. For example, if the ADC input range is –10 to
+10 V peak to peak and the gain is 2, the device input range is –5 to +5 V
peak to peak, or 20 V.

The smaller the code width, the more accurately a device can represent
the signal. The formula confirms what you have already learned in the
discussion on resolution, range, and gain:

• Larger resolution = smaller code width = more accurate representation
of the signal

Gain = 1

Gain = 1

Gain = 2

Gain = 2

10.00
8.75

7.5

6.25

5.00

3.75

2.50

1.25

0.00

111

110

101

100

011

010

001

000

V

sec

C D 1
2R()

----------⋅=

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-15 LabVIEW Introduction Course Manual

• Larger amplification = smaller code width = more accurate
representation of the signal

• Larger range = larger code width = less accurate representation of the
signal

Determining the code width is important in selecting a DAQ device.
For example, a 12-bit DAQ device with a 0 to 10 V input range and an
amplification of one detects a 2.4 mV change, while the same device with
a –10 to 10 V input range would detect a change of 4.8 mV.

Increasing Shape Recovery
The most effective way of increasing the shape recovery of a signal is to
reduce your code width and increase your sampling frequency. To measure
the frequency of your signal effectively, you must sample the signal at least
the Nyquist frequency.

The following states the Nyquist Theorem:

Where fsampling is the sampling rate, and fsignal is the highest frequency
component of interest in the measured signal.

The Nyquist Theorem states that you must sample a signal at a rate greater
than twice the highest frequency component of interest in the signal to
capture the highest frequency component of interest. Otherwise, the
high-frequency content aliases at a frequency inside the spectrum of
interest, called the pass-band.

To determine how fast to sample, refer to Figure 7-13 which shows the
effects of various sampling rates. In case A, the sine wave of frequency f is
sampled at the same frequency f. The reconstructed waveform appears as an
alias at DC. However, if you increase the sampling rate to 2f, the digitized

C D 1
2R()

----------⋅ 10 1
212()

------------⋅ 2.4mV= = =

C D 1
2R()

----------⋅ 20 1
212()

------------⋅ 4.8mV= = =

fsampling 2 fsignal⋅>

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-16 ni.com

waveform has the correct frequency (same number of cycles) but appears as
a triangle waveform. In this case f is equal to the Nyquist frequency. By
increasing the sampling rate to well above f, for example 5f, you can more
accurately reproduce the waveform. In case C, the sampling rate is at

The Nyquist frequency in this case is

Because f is larger than the Nyquist frequency, this sampling rate reproduces
an alias waveform of incorrect frequency and shape.

The faster the sample, the better the shape recovery of the signal. However,
available hardware often limits the sampling rate.

Figure 7-13. Effects of various sampling rates while sampling a signal

4f
3

4f() 3⁄
2

---------------- 2f
3
-----=

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-17 LabVIEW Introduction Course Manual

Decreasing Noise
To reduce noise take the following precautions:

• Use shielded cables or a twisted pair of cables.

• Minimize wire length to minimize noise the lead wires pick up.

• Keep signal wires away from AC power cables and monitors to reduce
50 or 60 Hz noise.

• Reduce the signal-to-noise (SNR) ratio by amplifying the signal close to
the signal source.

• Acquire data at a higher frequency than necessary, then average the data
to reduce the impact of the noise, as noise tends to average to zero.

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-18 ni.com

Exercise 7-1 Concepts: Measurement Fundamentals

Goal
Understand how resolution, voltage range, gain, and aliasing affect a
measured signal.

Description

1. Open Resolution.vi in the C:\Exercises\LabVIEW Basics
I\Measurement Fundamentals directory.

This VI simulates the acquisition of a sine wave and the digitization that
occurs with an analog to digital convertor (ADC). This VI contains the
following controls and indicators:

• Input Signal Voltage: This input specifies the range of the signal
being acquired. The default value of the control is +/- 1 Volt.
This means that the range of the signal is 2 V: voltage between the
highest point of the signal and the lowest point of the signal.

• Resolution (ADC): This input specifies the resolution of the ADC
of the data acquisition board used to acquire the signal. The default
value of the control is 3 bits.

• Device Input Range: The input incorporates the input range of the
ADC and the gain applied to the signal. The default value of the
control is +/– 1 Volts. This peak to peak voltage is equivalent to
2 volts. Since the input range of the ADC is +/– 10 V, this means that
there is a gain of 10 applied to the signal.

• Code Width: This output calculates the code width using the current
values of the controls, where C is code width, D is device input
range, and R is bits of resolution:

C D 1
2R()

----------⋅ 2 1
23()

----------⋅ 0.25V= = =

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-19 LabVIEW Introduction Course Manual

2. Run the VI and experiment with the values of the controls.

Figure 7-14. Resolution VI Front Panel

❑ Click the Run button to run the VI.

❑ Leave the default settings for the controls.

The red plot demonstrates the actual input sinewave. The white plot
demonstrates the output of the ADC. Notice that the white plot is a
poor representation of the signal. You can see the code width of .25
volts shown on the graph representing only 8 discrete levels.

❑ Change the Resolution (ADC).

Notice that the signal representation quality increases as a larger
ADC resolution is chosen.

❑ Set the resolution to 3 bits.

❑ Change the Device Input Range.

Notice that when too large of an input range is chosen, the resolution
is not efficiently divided among the signals range. When too small
of an input range is chosen, part of the signal is cut off.

❑ Experiment further with different control values until you
understand the importance of each input.

It is important to ensure that the input signal range is as close to the device
input range as possible. In the next lesson, you learn to set the device input
range in software.

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-20 ni.com

3. Using the Resolution VI, determine the code width of an input signal
that varies between +/– 0.8 V using a data acquisition board with a
resolution of 16 bits. Assume that gain is efficiently applied.

Code Width:

4. Determine the code width of an input signal that varies between +/-10 V
using a data acquisition board with a resolution of 8 bits. The device
input range is set to +/– 10 V.

Code Width:

5. If the device input range is +/– 1 V, and the resolution is 12 bits, what is
the largest input signal you can read without cutting off the input signal?

Input Signal Range:

6. Stop and close the VI when you are finished.

7. Open Aliasing.vi in the C:\Exercises\LabVIEW Basics
I\Measurement Fundamentals directory.

This VI simulates the acquisition of a waveform at a specific sampling
frequency. As you adjust the sampling frequency and the frequency of
the acquired waveform, you can observe the Nyquist Theorem in effect.
This VI contains the following controls:

• Original Signal:

– Frequency: This input specifies the frequency of the signal
being acquired. You can increase or decrease this frequency by
turning the knob.

– Sampled Waveform: The input allows you to choose between a
sine wave or a square wave. Use the sine wave input to
experiment with the Nyquist Theorem, and the square wave to
understand how the sampling frequency affects shape recovery.

• Sampled Signal:

– Sampling Rate (Hz): This input specifies the rate at which the
data acquisition board takes a sample of the acquired signal.
According to the Nyquist Theorem, this rate should be at least
twice the frequency of the sampled signal.

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-21 LabVIEW Introduction Course Manual

8. Run the VI and experiment with the values of the controls until the
acquired frequency is wrong.

Figure 7-15. Aliasing VI Front Panel

❑ Set the Sampled Waveform to Sine.

❑ Set the Sampling Rate Hz to 10MS/s (megasamples per second).

❑ Adjust the Frequency of the Sampled Signal, starting at the lowest
frequency, and moving up until the frequency reported on the top
chart is no longer correct. Notice how the Sampled plot becomes
more distorted as you increase the Frequency of the Sampled Signal.
After you have passed the Nyquist frequency (5 MHz in this case),
the frequency recorded is no longer correct. This is an example of
aliasing.

9. Try other values for the controls using a sine wave.

10. Set the Sampled Waveform to Square. Modify the controls to see how
shape recovery is affected by the sampling frequency and the frequency
of the signal.

11. Stop and close the VI when you are finished.

End of Exercise 7-1

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-23 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. Calculate the code-width for signal acquired using a 16 bit data
acquisition board with a device input range of 5 V.

2. You are acquiring a triangle wave with a frequency of 1100 Hz. Which
sampling frequency should you use for best shape recovery of the
signal?

a. 1 kHz

b. 10 kHz

c. 100 kHz

d. 1000 kHz

3. You are acquiring a triangle wave with a frequency of 1100 Hz. You can
sample the signal at the following rates. Which is the minimum
sampling frequency you should use to reliably acquire the frequency of
the signal?

a. 1 kHz

b. 10 kHz

c. 100 kHz

d. 1000 kHz

Lesson 7 Measurement Fundamentals

© National Instruments Corporation 7-25 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

1. Calculate the code-width for signal acquired using a 16 bit data
acquisition board with a device input range of 5 V.

2. You are acquiring a triangle wave with a frequency of 1100 Hz. Which
sampling frequency should you use for best shape recovery of the
signal?

a. 1 kHz

b. 10 kHz

c. 100 kHz

d. 1000 kHz

3. You are acquiring a triangle wave with a frequency of 1100 Hz. You can
sample the signal at the following rates. Which is the minimum
sampling frequency you should use to reliably acquire the frequency of
the signal?

a. 1 kHz

b. 10 kHz

c. 100 kHz

d. 1000 kHz

C D 1
2R()

----------⋅ 5 1
216()

------------⋅
 76.29µV== =

Lesson 7 Measurement Fundamentals

LabVIEW Introduction Course Manual 7-26 ni.com

Notes

© National Instruments Corporation 8-1 LabVIEW Introduction Course Manual

8
Data Acquisition

A data acquisition (DAQ) system uses a data acquisition board to pass a
conditioned electrical signal to a computer for software analysis and data
logging. You can choose a data acquisition board that uses a PCI bus, a PXI
bus, or the computer USB or IEEE 1394 port. This lesson explains the
hardware used in a data acquisition system, how to configure the devices
and how to program analog input and output, counters, and digital input and
output.

Topics

A. Hardware

B. Software Architecture

C. Simulating a DAQ Device

D. Analog Input

E. Analog Output

F. Counters

G. Digital I/O

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-2 ni.com

A. Hardware
A typical DAQ system has three basic types of hardware—a terminal block,
a cable, and a DAQ device, as shown in Figure 8-1.

Figure 8-1. Typical DAQ System

After you have converted a physical phenomenon into a measurable signal
with or without signal conditioning, you need to acquire that signal. To
acquire a signal, you need a terminal block, a cable, a DAQ device, and a
computer. This hardware combination can transform a standard computer
into a measurement and automation system.

Terminal Block and Cable
A terminal block provides a place to connect signals. It consists of screw or
spring terminals for connecting signals and a connector for attaching a cable
to connect the terminal block to a DAQ device. Terminal blocks have 100,
68, or 50 terminals. The type of terminal block you should choose depends
on two factors—the device and the number of signals you are measuring. A
terminal block with 68 terminals offers more ground terminals to connect a
signal to than a terminal block with 50 terminals. Having more ground
terminals prevents the need to overlap wires to reach a ground terminal,
which can cause interference between the signals.

1 Signal 2 Terminal Block 3 Cable

4 DAQ Device 5 Computer

 NATIONAL
INSTRUMENTS

 NATIONAL
INSTRUMENTS

1

2

3

4

5

Lesson 8 Data Acquisition

© National Instruments Corporation 8-3 LabVIEW Introduction Course Manual

Terminal blocks can be shielded or non-shielded. Shielded terminal blocks
offer better protection against noise. Some terminal blocks contain extra
features, such as cold-junction compensation, that are necessary to measure
a thermocouple properly.

A cable transports the signal from the terminal block to the DAQ device.
Cables come in 100-, 68-, and 50-pin configurations. Choose a
configuration depending on the terminal block and the DAQ device you are
using. Cables, like terminal blocks, are shielded or non-shielded.

Refer to the DAQ section of the National Instruments catalog or to
ni.com/products for more information about specific types of terminal
blocks and cables.

DAQ Signal Accessory
Figure 8-2 shows the terminal block you are using for this course, the DAQ
Signal Accessory.

Figure 8-2. DAQ Signal Accessory

The DAQ Signal Accessory is a customized terminal block designed for
learning purposes. It has three different cable connectors to accommodate
many different DAQ devices and spring terminals to connect signals. You
can access three analog input channels, one of which is connected to the
temperature sensor, and two analog output channels.

The DAQ Signal Accessory includes a function generator with a switch to
select the frequency range of the signal, and a frequency knob. The function
generator can produce a sine wave or a square wave. A connection to ground
is located between the sine wave and square wave terminal.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-4 ni.com

A digital trigger button produces a TTL pulse for triggering analog input or
output. When you press the trigger button, the signal goes from +5 V to 0 V
when pressed and returns to +5 V when you release the button. Four LEDs
connect to the first four digital lines on the DAQ device. The LEDs use
reverse logic, so when the digital line is high, the LED is off and vice versa.

The DAQ Signal Accessory has a quadrature encoder that produces two
pulse trains when you turn the encoder knob. Terminals are provided for the
input and output signals of two counters on the DAQ device. The DAQ
Signal Accessory also has a relay, a thermocouple input, and a microphone
jack.

DAQ Device
Most DAQ devices have four standard elements: analog input, analog
output, digital I/O, and counters.

You can transfer the signal you measure with the DAQ device to the
computer through a variety of different bus structures. For example, you can
use a DAQ device that plugs into the PCI bus of a computer, a DAQ device
connected to the PCMCIA socket of a laptop, or a DAQ device connected to
the USB port of a computer. You also can use PXI/CompactPCI to create a
portable, versatile, and rugged measurement system.

If you do not have a DAQ device, you can simulate one in Measurement and
Automation Explorer to complete your software testing. You learn to
simulate a device in the Simulating a DAQ Device section of this lesson.

Refer to the DAQ section of the NI catalog or to ni.com/products for more
information about specific types of DAQ devices.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-5 LabVIEW Introduction Course Manual

B. Software Architecture
National Instruments data acquisition boards have a driver engine that
communicates between the board and the application software. There are
two different driver engines to choose from: NI-DAQmx and Traditional
NI-DAQ. You can use LabVIEW to communicate with these driver engines.
You have already used the DAQ Assistant in LabVIEW to communicate
with your data acquisition board. The DAQ Assistant is an Express VI that
communicates with NI-DAQmx.

In addition, National Instruments has a application that is useful for
configuring your data acquisition boards: Measurement & Automation
Explorer (MAX). In this section, you learn about the driver engines and
about using MAX to configure your data acquisition board.

NI-DAQ
NI-DAQ 7.0 contains two NI-DAQ drivers—Traditional NI-DAQ (Legacy)
and NI-DAQmx—each with its own application programming interface
(API), hardware configuration, and software configuration.

• Traditional NI-DAQ (Legacy) is an upgrade to NI-DAQ 6.9.x, the earlier
version of NI-DAQ. Traditional NI-DAQ (Legacy) has the same VIs and
functions and works the same way as NI-DAQ 6.9.x. You can use
Traditional NI-DAQ (Legacy) on the same computer as NI-DAQmx,
which you cannot do with NI-DAQ 6.9.x.

• NI-DAQmx is the latest NI-DAQ driver with new VIs, functions, and
development tools for controlling measurement devices. The advantages
of NI-DAQmx over previous versions of NI-DAQ include the DAQ
Assistant for configuring channels and measurement tasks for a device;
increased performance, including faster single-point analog I/O and
multithreading; and a simpler API for creating DAQ applications using
fewer functions and VIs than earlier versions of NI-DAQ.

Traditional NI-DAQ (Legacy) and NI-DAQmx support different sets of
devices. Refer to the National Instruments Web site at ni.com/daq for the
list of supported devices.

This lesson describes the NI-DAQmx API.

When programming an NI measurement device, you can use NI application
software such as LabVIEW, LabWindows™/CVI™, and Measurement
Studio, or open ADEs that support calling dynamic link libraries (DLLs)
through ANSI C interfaces. Using NI application software greatly reduces
development time for data acquisition and control applications regardless of
which programming environment you use:

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-6 ni.com

• LabVIEW supports data acquisition with the LabVIEW DAQ VIs,
a series of VIs for programming with NI measurement devices.

• For C developers, LabWindows/CVI is a fully integrated ANSI C
environment that provides the LabWindows/CVI Data Acquisition
library for programming NI measurement devices.

• Measurement Studio development tools are for designing your test and
measurement software in Microsoft Visual Studio .NET. Measurement
Studio includes tools for Visual C#, Visual Basic .NET, and
Visual C++ .NET.

DAQ Hardware Configuration
Before using a data acquisition board, you must confirm that the software
can communicate with the board by configuring the devices. The devices are
already configured for the computers in this class.

Windows
The Windows Configuration Manager keeps track of all the hardware
installed in the computer, including National Instruments DAQ devices.
If you have a Plug & Play (PnP) device, such as an E Series MIO device,
the Windows Configuration Manager automatically detects and configures
the device. If you have a non-PnP device, or legacy device, you must
configure the device manually using the Add New Hardware option
in the Control Panel.

You can verify the Windows Configuration by accessing the Device
Manager. You can see Data Acquisition Devices, which lists all
DAQ devices installed in the computer. Double-click a DAQ device to
display a dialog box with tabbed pages. The General tab displays overall
information regarding the device. The Resources tab specifies the system
resources to the device such as interrupt levels, DMA, and base address for
software-configurable devices. The NI-DAQ Information tab specifies the
bus type of the DAQ device. The Driver tab specifies the driver version and
location for the DAQ device.

Measurement & Automation Explorer
LabVIEW installs Measurement & Automation Explorer (MAX), which
establishes all device and channel configuration parameters. After installing
a DAQ device in the computer, you must run this configuration utility. MAX
reads the information the Device Manager records in the Windows Registry
and assigns a logical device number to each DAQ device. Use the device
number to refer to the device in LabVIEW. Access MAX either by
double-clicking the icon on the desktop or selecting Tools»Measurement
& Automation Explorer in LabVIEW. The following window is the

Lesson 8 Data Acquisition

© National Instruments Corporation 8-7 LabVIEW Introduction Course Manual

primary MAX window. MAX is also the means for SCXI and SCC
configuration.

The device parameters that you can set using the configuration utility
depend on the device. MAX saves the logical device number and the
configuration parameters in the Windows Registry.

The plug and play capability of Windows automatically detects and
configures switchless DAQ devices, such as the PCI-6024E. When you
install a device in the computer, the device is automatically detected.

Scales
You can configure custom scales for your measurements. This is very useful
when working with sensors. It allows you to bring a scaled value into your
application without having to work directly with the raw values. For
example, in this course you use a temperature sensor that represents
temperature with a voltage. The conversion equation for the temperature is:
Voltage x 100 = Celsius. After a scale is set, you can use it in your
application program, providing the temperature value, rather than the
voltage.

1: AT-MIO-64E-3

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-8 ni.com

C. Simulating a DAQ Device
You can create NI-DAQmx simulated devices in NI-DAQmx 7.4 or later.
Using NI-DAQmx simulated devices, you can try NI products in your
application without the hardware. When you later acquire the hardware, you
can import the NI-DAQmx simulated device configuration to the physical
device using the MAX Portable Configuration Wizard. With NI-DAQmx
simulated devices, you also can export a physical device configuration onto
a system that does not have the physical device installed. Then, using the
NI-DAQmx simulated device, you can work on your applications on a
portable system and upon returning to the original system, you can easily
import your application work.

Creating NI-DAQmx Simulated Devices
To create an NI-DAQmx simulated device, complete the following steps:

• Right-click Devices and Interfaces and select Create»New.

• A dialog box prompts you to select a device to add. Select NI-DAQmx
Simulated Device and click Finish.

• In the Choose Device dialog box, select the family of devices for the
device you want to simulate.

• Select the device and click OK. In the configuration tree in MAX, the
icons for NI-DAQmx simulated devices are yellow. The icons for
physical devices are green.

• If you select a PXI device, you are prompted to select a chassis number
and PXI slot number.

• If you select an SCXI chassis, the SCXI configuration panels open.

Removing NI-DAQmx Simulated Devices
To remove an NI-DAQmx simulated device, complete the following steps:

• Expand Devices and Interfaces»NI-DAQmx Devices.

• Right-click the NI-DAQmx simulated device you want to delete.

• Click Delete.

Note In the configuration tree in MAX, the icons for NI-DAQmx simulated devices are
yellow. The icons for physical devices are green.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-9 LabVIEW Introduction Course Manual

Exercise 8-1 Concept: MAX

Goal
To use MAX to examine, configure, and test a device.

Description
Complete the following steps to examine the configuration for the
DAQ device in the computer using MAX and use the test routines
in MAX to confirm operation of the device. If you do not have a DAQ
device, you can simulate a device using the instructions in Part A. Creating
a Simulated Device.

Note Portions of this exercise that can only be completed with the use of a real device
and a DAQ signal accessory are marked Hardware. Some of these steps have alternative
instructions for simulated devices and are marked No Hardware.

1. Launch MAX by double-clicking the icon on the desktop or by selecting
Tools»Measurement & Automation Explorer in LabVIEW.
MAX searches the computer for installed National Instruments
hardware and displays the information.

Part A. Creating a Simulated Device
2. Create an NI-DAQmx simulated device to allow you to complete the

exercises in this chapter without hardware. If you have a DAQ device
installed, you can skip this step.

❑ Right-click Devices and Interfaces and select Create»New.

❑ A dialog box prompts you to select a device to add. Select
NI-DAQmx Simulated Device and click Finish.

❑ In the Choose Device dialog box, select M Series DAQ»NI PCI
6225.

❑ Click OK.

Part B. Examining the DAQ Device Settings
3. Expand the Devices and Interfaces section.

4. Expand the NI-DAQmx Devices section to view the installed National
Instruments devices that use the NI-DAQmx driver.

5. Select the device listed in the NI-DAQmx Devices section. Figure 8-3
shows the PCI-MIO-16E-4 device.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-10 ni.com

Figure 8-3. MAX with Device and Interfaces expanded

MAX displays the National Instruments hardware and software in the
computer. The device number appears in quotes following the device
name. The Data Acquisition VIs use this device number to determine
which device performs DAQ operations. MAX also displays the
attributes of the device such as the system resources that are being used
by the device.

Note You might have a different device installed, and some of the options shown might
be different. Click the Show Help/Hide Help button in the top right corner of MAX to
hide the online help and show the DAQ device information.

6. Select the Device Routes tab to see detailed information about the
internal signals that can be routed to other destinations on the device, as
shown in Figure 8-4. This is a powerful resource that gives you a visual
representation of the signals that are available to provide timing and
synchronization with components that are on the device and other
external devices.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-11 LabVIEW Introduction Course Manual

Figure 8-4. Device Routes

7. Select the Calibration tab, as shown in Figure 8-5, to see information
about the last time the device was calibrated both internally and
externally.

Figure 8-5. Calibration

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-12 ni.com

8. Right-click the NI-DAQmx device in the configuration tree and select
Self-Calibrate to calibrate the DAQ device using a precision voltage
reference source and update the built-in calibration constants. When the
device has been calibrated, the Self Calibration information updates in
the Calibration tab. Skip this step if you are using a simulated device.

Part C. Testing the DAQ Device Components
9. Click the Self-Test button to test the device. This tests the system

resources assigned to the device. The device should pass the test because
it is already configured.

10. Click the Test Panels button to test the individual functions of the
DAQ device, such as analog input and output. The Test Panels dialog
box appears.

❑ Use the Analog Input tab to test the various analog input channels
on the DAQ device. Click the Start button to acquire data from
analog input channel 0.

– Hardware: If you have a DAQ Signal Accessory, channel
Dev1/ai0 is connected to the temperature sensor. Place your
finger on the sensor to see the voltage rise. You also can move
the Noise switch to On on the DAQ Signal Accessory to see the
signal change in this tab. When you are finished, click the Stop
button.

– No Hardware: If you are using a simulated device, a sine wave
is shown on all input channels. Experiment with the setting on
this tab. When you are finished, click the Stop button.

❑ Click the Analog Output tab to set up a single voltage or sine wave
on one of the DAQ device analog output channels.

❑ Change the output Mode to Sinewave Generation and click the
Start button. LabVIEW generates a continuous sine wave on analog
output channel 0.

❑ Hardware: On the external DAQ Signal Accessory box, wire
Analog Out Ch0 to Analog In Ch1.

❑ Hardware: Click the Analog Input tab and change the channel to
Dev1/ai1. Click the Start button to acquire data from analog input
channel 1. LabVIEW displays the sine wave from analog output
channel 0.

❑ Click the Digital I/O tab to test the digital lines on the DAQ device.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-13 LabVIEW Introduction Course Manual

❑ Set lines 0 through 3 as output and toggle the Logic Level
checkboxes. If you have a DAQ signal accessory, toggling the boxes
turns the LEDs on or off. The LEDs use negative logic.

❑ Hardware: Click the Counter I/O tab to determine if the DAQ
device counter/timers are functioning properly. To verify
counter/timer operation, change the counter Mode tab to Edge
Counting and click the Start button. The Counter Value
increments rapidly. Click Stop to stop the counter test.

❑ Click the Close button to close the Test Panel and return to MAX.

Part D. Setting a Custom Scale
11. Hardware: Create a custom scale for the temperature sensor on the

DAQ Signal Accessory. The sensor conversion is linear, and the formula
is Voltage x 100 = Celsius.

Figure 8-6. Temperature Scale

❑ Right-click the Scales section and select Create New from the
shortcut menu.

❑ Select NI-DAQmx Scale.

❑ Click Next.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-14 ni.com

❑ Select Linear.

❑ Name the scale Temperature.

❑ Click Finish.

❑ Change the Scaling Parameters Slope to 100.

❑ Enter Celsius as the Scaled Units.

❑ Click the Save button on the toolbar to save the scale. You use this
scale in later exercises.

12. Close MAX by selecting File»Exit.

End of Exercise 8-1

Lesson 8 Data Acquisition

© National Instruments Corporation 8-15 LabVIEW Introduction Course Manual

D. Analog Input
Analog input is the process of measuring an analog signal and transferring
the measurement to a computer for analysis, display or storage. An analog
signal is a signal that varies continuously. Analog input is most commonly
used to measure voltage or current. You can use many types of devices to
perform analog input, such as multifunction DAQ (MIO) devices,
high-speed digitizers, digital multimeters (DMMs) and Dynamic Signal
Acquisition (DSA) devices.

Analog-to-Digital Conversion
Acquiring an analog signal with a computer requires a process known as
analog-to-digital conversion, which takes an electrical signal and translates
it into digital data so that a computer can process it. Analog-to-digital
converters (ADCs) are circuit components that convert a voltage level into
a series of ones and zeroes.

ADCs sample the analog signal on each rising or falling edge of a sample
clock. In each cycle, the ADC takes a snapshot of the analog signal, so that
the signal can be measured and converted into a digital value. A sample
clock controls the rate at which samples of the input signal are taken.
Because the incoming, or unknown signal is a real world signal with infinite
precision, the ADC approximates the signal with fixed precision. After the
ADC obtains this approximation, the approximation can be converted to a
series of digital values. Some conversion methods do not require this step,
because the conversion generates a digital value directly as the ADC reaches
the approximation.

Task Timing
When performing analog input, the task can be timed to Acquire 1 Sample,
Acquire n Samples, or Acquire Continuously.

Acquire 1 Sample
Acquiring a single sample is an on-demand operation. In other words, the
driver acquires one value from an input channel and immediately returns the
value. This operation does not require any buffering or hardware timing. For
example, if you periodically monitor the fluid level in a tank, you would
acquire single data points. You can connect the transducer that produces a
voltage representing the fluid level to a single channel on the measurement
device and initiate a single-channel, single-point acquisition when you want
to know the fluid level.

Acquire n Samples
One way to acquire multiple samples for one or more channels is to acquire
single samples in a repetitive manner. However, acquiring a single data

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-16 ni.com

sample on one or more channels over and over is inefficient and time
consuming. Moreover, you do not have accurate control over the time
between each sample or channel. Instead you can use hardware timing,
which uses a buffer in computer memory, to acquire data more efficiently.
Programmatically, you need to include the timing function and specify the
sample rate and the sample mode (finite). As with other functions, you can
acquire multiple samples for a single channel or multiple channels.

With NI-DAQmx, you also can gather data from multiple channels. For
instance, you might want to monitor both the fluid level in the tank and the
temperature. In such a case, you need two transducers connected to two
channels on the device.

Acquire Continuously
If you want to view, process, or log a subset of the samples as they are
acquired, you need to continually acquire samples. For these types of
applications, set the sample mode to continuous.

Task Triggering
When a device controlled by NI-DAQmx does something, it performs an
action. Two very common actions are producing a sample and starting a
waveform acquisition. Every NI-DAQmx action needs a stimulus or cause.
When the stimulus occurs, the action is performed. Causes for actions are
called triggers. The start trigger starts the acquisition. The reference trigger
establishes the reference point in a set of input samples. Data acquired up to
the reference point is pretrigger data. Data acquired after the reference point
is posttrigger data.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-17 LabVIEW Introduction Course Manual

Exercise 8-2 Triggered Analog Input VI

Goal
To acquire an analog signal using a DAQ device and a digital trigger.

Scenario
Build a VI that measures the voltage signal on channel AI1 of the DAQ
device. The VI begins measuring when a digital trigger is pressed and the
Power switch on the front panel is on. The VI stops measuring when the
Power switch on the front panel is off.

Design

User Interface Inputs and Outputs

External Inputs and Outputs
• Inputs: AI1 of the data acquisition board. Connect the sine function

generator to channel analog input 1 on the DAQ Signal Accessory with
a wire. You also can use a DAQ Simulated Device to acquire data.

Type Name Properties

Waveform
Chart

Analog Input Data X-Scale range: 1/100 second

Vertical Toggle
Switch

Power

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-18 ni.com

Implementation
In the following steps, you build the front panel shown in Figure 8-7.

Figure 8-7. Triggered Analog Input front panel

1. Open a blank VI.

2. Create the Analog Input Data waveform chart.

❑ Place a Waveform Chart on the front panel.

❑ Rename the waveform chart Analog Input Data. You set up the
scaling for the chart later in this exercise.

3. Create the Power vertical toggle switch.

❑ Place a vertical toggle switch on the front panel.

❑ Rename the switch Power.

❑ Create two free labels, Off and On, using the Labeling tool.

❑ Place the free labels as shown in Figure 8-7.

4. Save the VI as Triggered Analog Input.vi in the
C:\Exercises\LabVIEW Basics I\Triggered Analog Input
directory.

In the following steps, you build the block diagram shown in Figure 8-8.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-19 LabVIEW Introduction Course Manual

Figure 8-8. Triggered Analog Input Block Diagram

5. Set up the DAQ Assistant to acquire data on AI1 at 50KHz when the
digital trigger is pressed. If you are using a simulated device, acquire the
data without need of a trigger.

❑ Place the DAQ Assistant Express VI on the block diagram.

❑ Select Analog Input»Voltage for the measurement to make.

❑ Select Dev1»ai1 for the physical channel.

❑ Click the Finish button.

❑ Set the Signal Input Range on the Settings tab to a range of –1 to
1 Volts.

❑ Set the Acquisition Mode on the Task Timing tab to Continuous.

❑ Set the Samples to Read in the Clock Settings section of theTask
Timing tab to 5000.
The number of samples defines the amount of data removed from the
buffer at one time.

❑ Set the Rate (Hz) in the Clock Settings section of theTask Timing
tab to 20k.

❑ If you are using the DAQ Signal Accessory, switch to the Task
Triggering tab. If you are using a NI-DAQmx Simulated Device,
click the OK button and continue to step 6.

❑ Set the Trigger Type in the Start Trigger section of theTask
Triggering tab to Digital Edge.

❑ Set the Trigger Source to PFI0.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-20 ni.com

❑ Set the Edge to Rising.

❑ Click the OK button to close the Analog Input Voltage Task
Configuration dialog box.

6. Click OK when the DAQ Assistant asks if you would like to have a
While Loop automatically generated. Notice that it creates the While
Loop, status Unbundle by Name, Or function and a Stop button for you.

7. Delete the Stop button; you use the Power switch instead.

8. Place the Power terminal in the While Loop.

9. Convert the acquired data to an array of numerics to graph the data by
sample number rather than time.

❑ Place a Convert from Dynamic Data Express VI in the While Loop.

❑ In the Config dialog box Select 1D array of scalars - automatic in
the Resulting data type listbox.

❑ Click OK.

10. Place a Simple Error Handler VI to the right of the While Loop.

11. Wire the block diagram as shown in Figure 8-8.

12. Switch to the front panel.

13. Adjust the X-Scale of the waveform chart.

❑ Right-click the waveform chart and select X-Scale»AutoScale X to
turn off autoscaling.

❑ Use the Labeling tool to change the last value on the X Scale of the
Waveform Chart to 100.

14. Save the VI.

Testing
1. If you are using the DAQ Signal Accessory, confirm that a wire connects

the sine function generator to analog in channel 1.

2. Use the Operating Tool to put the Power switch in the On position.

3. Run the VI.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-21 LabVIEW Introduction Course Manual

Hardware
❑ Press the digital trigger button on the DAQ Signal Accessory. The

waveform chart should start displaying a sine wave.

❑ Change the frequency of the sine wave using the Frequency Adjust
dial on the DAQ Signal Accessory.

No Hardware
❑ The waveform chart should start displaying a sine wave. You do not

use a trigger because you cannot set up a digital trigger on a
simulated device because there is no physical trigger to switch.

4. Switch the Power switch to the Off position when you are finished. The
VI should stop.

5. What happens if you start the VI with the switch in the Off position? Is
this desired behavior?

6. Modify the Power switch so that it returns to the On position after it is
pressed, and the On position is the default value.

❑ Use the Operating tool to place the Power switch in the On position.

❑ Right-click the Power switch and select Data Operations»Make
Current Value Default from the shortcut menu.

❑ Right-click the Power switch and select Mechanical Action»Latch
When Pressed from the shortcut menu.

7. Run the VI. Does the Power switch behave as you expect?

8. Stop and close the VI.

End of Exercise 8-2

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-22 ni.com

E. Analog Output
Analog output is the process of generating electrical signals from your
computer. Analog output is generated by performing digital-to-analog
(D/A) conversions. The available analog output types for a task are voltage
and current.

To perform a voltage or current task, a compatible device must be installed
that can generate that form of signal.

Task Timing
When performing analog output, the task can be timed to Generate
1 Sample, Generate n Samples, or Generate Continuously.

Generate 1 Sample
Use single updates if the signal level is more important than the generation
rate. For example, generate one sample at a time if you need to generate a
constant, or DC, signal. You can use software timing to control when the
device generates a signal.

This operation does not require any buffering or hardware timing. For
example, if you need to generate a known voltage to stimulate a device,
a single update would be an appropriate task.

Generate n Samples
One way to generate multiple samples for one or more channels is to
generate single samples in a repetitive manner. However, generating a single
data sample on one or more channels over and over is inefficient and time
consuming. Moreover, you do not have accurate control over the time
between each sample or channel. Instead, you can use hardware timing,
which uses a buffer in computer memory to generate samples more
efficiently.

You can use software timing or hardware timing to control when a signal is
generated. With software timing, the rate at which the samples are generated
is determined by the software and operating system instead of by the
measurement device. With hardware timing, a TTL signal, such as a clock
on the device, controls the rate of generation. A hardware clock can run
much faster than a software loop. A hardware clock is also more accurate
than a software loop.

Note Some devices do not support hardware timing. Consult the device documentation
if you are unsure if the device supports hardware timing.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-23 LabVIEW Introduction Course Manual

Programmatically, you need to include the timing function, specifying the
sample rate and the sample mode (finite). As with other functions, you can
generate multiple samples for a single channel or multiple channels.

Use Generate n Samples if you want to generate a finite time-varying signal,
such as an AC sine wave.

Generate Continuously
Continuous generation is similar to Generate n Samples, except that an
event must occur to stop the generation. If you want to continuously
generate signals, such as generating a non-finite AC sine wave, set the
timing mode to continuous.

Task Triggering
When a device controlled by NI-DAQmx does something, it performs an
action. Two very common actions are producing a sample and starting a
generation. Every NI-DAQmx action needs a stimulus or cause. When the
stimulus occurs, the action is performed. Causes for actions are called
triggers. A start trigger starts the generation.

Digital-to-Analog Conversion
Digital-to-analog conversion is the opposite of analog-to-digital conversion.
In digital-to-analog conversion, the data starts in the computer. The data
might have been acquired earlier using analog input or may have been
generated by software on the computer. A digital-to-analog converter (DAC)
accepts this data and uses it to vary the voltage on an output pin over time.
The DAC generates an analog signal that the DAC can send to other devices
or circuits.

A DAC has an update clock that tells the DAC when to generate a new value.
The function of the update clock is similar to the function of the sample
clock for an analog-to-digital converter (ADC). At each cycle the clock, the
DAC converts a digital value to an analog voltage and creates an output as a
voltage on a pin. When used with a high speed clock, the DAC can create a
signal that appears to vary constantly and smoothly.

F. Counters
A counter is a digital timing device. You typically use counters for event
counting, frequency measurement, period measurement, position
measurement, and pulse generation.

• Count Register—Stores the current count of the counter. You can query
the count register with software.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-24 ni.com

• Source—An input signal that can change the current count stored in the
count register. The counter looks for rising or falling edges on the source
signal. Whether a rising or falling edge changes the count is software
selectable. The type of edge selected is referred to as the active edge of
the signal. When an active edge is received on the source signal, the
count changes. Whether an active edge increments or decrements the
current count is also software selectable.

• Gate—An input signal that determines if an active edge on the source
changes the count. Counting can occur when the gate is high, low, or
between various combinations of rising and falling edges. Gate settings
are made in software.

• Output—An output signal that generates pulses or a series of pulses,
otherwise known as a pulse train.

When you configure a counter for simple event counting, the counter
increments when an active edge is received on the source. In order for the
counter to increment on an active edge, the counter must be armed or started.
A counter has a fixed number it can count to as determined by the resolution
of the counter. For example, a 24-bit counter can count to:

2(Counter Resolution) – 1 = 224 – 1 = 16,777,215

When a 24-bit counter reaches the value of 16,777,215, it has reached the
terminal count. The next active edge forces the counter to roll over and start
at 0.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-25 LabVIEW Introduction Course Manual

Exercise 8-3 Count Events VI

Goal
Use the DAQ Assistant to input a counter value.

Scenario
You have been asked to build a VI that counts pulses from the quadrature
encoder on the DAQ Signal Accessory.

Design

Quadrature Encoder
A 24-pulse per revolution mechanical quadrature encoder measure the
position of a shaft as it rotates. The DAQ signal accessory quadrature
encoder is a knob located in the upper central portion of the top panel. The
quadrature encoder produces two pulse train outputs corresponding to the
shaft position as you rotate the knob. Depending on the direction of rotation,
phase A leads phase B by 90° or phase B leads phase A by 90°.

The DAQ Signal Accessory internally connects phase B of the quadrature
encoder to the Up/Down line for Counter 0 (DIO6). Connect phase A of the
quadrature encoder to the Source of Counter 0 (PFI8).

User Interface Inputs and Outputs

External Inputs
• Counter 0 Source (PFI8): Phase A of quadrature encoder

• Counter 0 Up/Down (DIO6): Phase B of quadrature encoder

Type Name Properties

Numeric
Indicator

Number of Events Double

Stop Button Stop

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-26 ni.com

Implementation
1. Open a blank VI and build the front panel shown in Figure 8-9.

Figure 8-9. Count Events VI front panel

2. Save the VI as Count Events.vi in the C:\Exercises\LabVIEW
Basics I\Count Events directory.

3. Switch to the block diagram.

4. Configure DAQ Assistant Express VI to use the counter to perform event
counting.

Figure 8-10. Count Events VI block diagram

❑ Place the DAQ Assistant Express VI on the block diagram.

❑ Select Counter Input»Edge Count for the measurement to make.

❑ Select Dev1»ctr0 for the physical channel.

❑ Click the Finish button.

❑ Change the Active Edge pull-down menu to Falling.

❑ Change the Count Direction pull-down menu to Externally
Controlled.

❑ Click the OK button to close the configuration dialog box.

5. Finish building the block diagram. Use Figure 8-10 as a guide to assist
you.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-27 LabVIEW Introduction Course Manual

6. Save the VI.

Testing
1. On the DAQ Signal Accessory, confirm that the A output of the

quadrature encoder is wired to the SOURCE input of counter 0.

2. Run the VI.

3. Rotate the quadrature encoder knob on the DAQ Signal Accessory.
Notice that the Number of Events indicator increments as you rotate the
knob. The quadrature encoder knob produces pulses as you rotate the
knob. The counter counts these pulses.

Rotate the quadrature encoder knob in the other direction. Notice that
the Number of Events indicator decrements when you rotate the knob
clockwise, and increments when you rotate the knob counterclockwise.

If the VI does not work as you expect, you may need to reset the DAQ
Device in Measurement and Automation Explorer.

4. Stop the VI.

5. Save and close the VI.

End of Exercise 8-3

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-28 ni.com

G. Digital I/O
Digital signals are electrical signals that transfer digital data over a wire.
These signals typically have only two states: on and off, also known as high
and low, or 1 and 0. When sending a digital signal across a wire, the sender
applies a voltage to the wire and the receiver uses the voltage level to
determine the value being sent. The voltage ranges for each digital value
depend on the voltage level standard being used. Digital signals have many
uses; the simplest application of a digital signal is controlling or measuring
digital or finite state devices such as switches and LEDs. Digital signals also
can transfer data; you can use them to program devices or communicate
between devices. In addition, you can use digital signals as clocks or triggers
to control or synchronize other measurements.

You can use the digital lines in a DAQ device to acquire a digital value. This
acquisition is based on software timing. On some devices, you can configure
the lines individually to either measure or generate digital samples. Each
line corresponds to a channel in the task.

You can use the digital port(s) in a DAQ device to acquire a digital value
from a collection of digital lines. This acquisition is based on software
timing. You can configure the ports individually to either measure or
generate digital samples. Each port corresponds to a channel in the task.

Lesson 8 Data Acquisition

© National Instruments Corporation 8-29 LabVIEW Introduction Course Manual

Exercise 8-4 Optional: Digital Count VI

Goal
Use the DAQ Assistant for digital I/O.

Scenario
Write a VI that converts the number of events generated by the quadrature
encoder to a digital number to display on the LEDs on the DAQ Signal
Accessory. Because there are only four LEDs, you are limited to a number
between 0 and 15 (24). For numbers greater than 15 and less than 0, the
LEDs should continue changing as though there were more LEDs available.

Design

Digital I/O
Each LED is wired to a digital line on the DAQ device. The lines are
numbered 0, 1, 2, and 3, starting with the LED on the right. You can write
to these lines individually or as a digital port. However, the digital port
includes all 8 DIO lines. Because the quadrature encoder uses DIO6 for
up/down counting, you cannot write to DIO6. Therefore, in this example,
you should write a Boolean array to digital lines 0–4.

Flowchart
When a number is converted to a Boolean array, the number of elements in
the array depends on the representation of the number used. If the number
is 32-bytes, there are 32 elements in the Boolean array. However, because
there are only four LEDs, you only need the first 4 elements of the array.

Modify the Count Events VI as shown in the following flowchart.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-30 ni.com

Figure 8-11. Digital Count Flowchart

Reduce the
array to a

4 element array

Acquire Counter 0
Output

Write Boolean
array to digital

lines 0 - 3

Yes

Convert Output to
a Boolean array

Stop?

No

Lesson 8 Data Acquisition

© National Instruments Corporation 8-31 LabVIEW Introduction Course Manual

Implementation

1. Open Count Events.vi in the C:\Exercises\LabVIEW
Basics I\Count Events directory.

2. Save the VI as Digital Count.vi.

3. Switch to the block diagram of the VI.

Figure 8-12. Digital Count VI Block Diagram

4. Delete the wire connected to the Number of Events terminal.

5. Delete the wire connected from the error terminal to the status element
of the Unbundle by Name functions.

6. Enlarge the While Loop and increase the amount of space between the
DAQ Assistant and the stop conditions.

7. Convert the count to a Boolean Array.

❑ Place a Convert From Dynamic Data Express VI to the right of the
data output of the DAQ Assistant.

❑ Set the resulting data type to Single Scalar.

❑ Click OK to close the dialog box.

❑ Place a Number to Boolean Array function to the right of the
Convert From Dynamic Data Express VI.

❑ Wire as shown in Figure 8-12.

8. Create a subarray containing the first four elements of the Boolean array.

❑ Place the Array Subset function to the right of the Number to
Boolean Array function.

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-32 ni.com

❑ Wire the output of the Number to Boolean Array function to the
array terminal of the Array Subset function.

❑ Right-click the index terminal and select Create»Constant from
the shortcut menu.

❑ Set the constant to 0.

❑ Right-click the length terminal and select Create»Constant from
the shortcut menu.

❑ Set the constant to 4.

9. Configure digital lines 0–3 for edge counting.

❑ Place the DAQ Assistant Express VI in the While Loop.

❑ Select Digital I/O»Line Output for the measurement to make.

❑ Select Dev1»line 0–line 3 for the physical channels and click the
Finish button.

❑ For each line, select Invert Line because the LEDs use negative
logic.

❑ Click the OK button to close the configuration dialog box.

Note In this exercise, you use individual lines rather than a port because DIO6 is used
by Phase B of the Quadrature Encoder.

10. Wire the block diagram as shown in Figure 8-12.

11. Save the VI.

Testing
1. Display the front panel.

2. Run the VI.

3. Turn the quadrature encoder and observe the changes on the DAQ Signal
Accessory.

4. Stop the VI.

5. Close the VI.

End of Exercise 8-4

Lesson 8 Data Acquisition

© National Instruments Corporation 8-33 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. You are reading a signal at 50kHz. You want to acquire the signal until
a stop trigger is pressed. Which task timing should you use?

a. Acquire 1 Sample

b. Acquire N Samples

c. Acquire Continuously

2. Your VI monitors a factory floor. Part of the VI controls an LED which
is used to alert users to the status of the system. Which task timing
should you use?

a. Generate 1 Sample

b. Generate N Samples

c. Generate Continuously

Lesson 8 Data Acquisition

© National Instruments Corporation 8-35 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. You are reading a signal at 50kHz. You want to acquire the signal until
a stop trigger is pressed. Which task timing should you use?

a. Acquire 1 Sample

b. Acquire N Samples

c. Acquire Continuously

2. Your VI monitors a factory floor. Part of the VI controls an LED which
is used to alert users to the status of the system. Which task timing
should you use?

a. Generate 1 Sample

b. Generate N Samples

c. Generate Continuously

Lesson 8 Data Acquisition

LabVIEW Introduction Course Manual 8-36 ni.com

Notes

© National Instruments Corporation 9-1 LabVIEW Introduction Course Manual

9
Instrument Control

This lesson describes instrument control of stand-alone instruments using a
GPIB or serial interface. Use LabVIEW to control and acquire data from
instruments with the Instrument I/O Assistant, the VISA API, and
instrument drivers.

Topics

A. Instrument Control

B. GPIB

C. Serial Port Communication

D. Using Other Interfaces

E. Software Architecture

F. Instrument I/O Assistant

G. VISA

H. Instrument Drivers

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-2 ni.com

A. Instrument Control
When you use a PC to automate a test system, you are not limited to the type
of instrument you can control. You can mix and match instruments from
various categories. The most common categories of instrument interfaces
are GPIB, serial, modular instruments, and PXI modular instruments.
Additional types of instruments include image acquisition, motion control,
USB, Ethernet, parallel port, NI-CAN, and other devices.

When you use PCs to control instruments, you need to understand properties
of the instrument, such as the communication protocols to use. Refer to the
instrument documentation for information about the properties of an
instrument.

B. GPIB
The ANSI/IEEE Standard 488.1-1987, also known as General Purpose
Interface Bus (GPIB), describes a standard interface for communication
between instruments and controllers from various vendors. GPIB, or
General Purpose Interface Bus, instruments offer test and manufacturing
engineers the widest selection of vendors and instruments for general-
purpose to specialized vertical market test applications. GPIB instruments
are often used as stand-alone benchtop instruments where measurements are
taken by hand. You can automate these measurements by using a PC to
control the GPIB instruments.

IEEE 488.1 contains information about electrical, mechanical, and
functional specifications. The ANSI/IEEE Standard 488.2-1992 extends
IEEE 488.1 by defining a bus communication protocol, a common set of
data codes and formats, and a generic set of common device commands.

GPIB is a digital, 8-bit parallel communication interface with data transfer
rates of 1 Mbyte/s and higher, using a three-wire handshake. The bus
supports one system controller, usually a computer, and up to 14 additional
instruments. The GPIB protocol categorizes devices as controllers, talkers,
or listeners to determine which device has active control of the bus. Each
device has a unique GPIB primary address between 0 and 30. The Controller
defines the communication links, responds to devices that request service,
sends GPIB commands, and passes/receives control of the bus. Controllers
instruct Talkers to talk and to place data on the GPIB. You can address only
one device at a time to talk. The Controller addresses the Listener to listen
and to read data from the GPIB. You can address several devices to listen.

Lesson 9 Instrument Control

© National Instruments Corporation 9-3 LabVIEW Introduction Course Manual

Data Transfer Termination
Termination informs listeners that all data has been transferred. You can
terminate a GPIB data transfer in the following three ways:

• The GPIB includes an End Or Identify (EOI) hardware line that can be
asserted with the last data byte. This is the preferred method.

• Place a specific end-of-string (EOS) character at the end of the data
string itself. Some instruments use this method instead of or in addition
to the EOI line assertion.

• The listener counts the bytes transferred by handshaking and stops
reading when the listener reaches a byte count limit. This method is
often used as a default termination method because the transfer stops on
the logical OR of EOI, EOS (if used) in conjunction with the byte count.
Thus, you typically set the byte count to equal or exceed the expected
number of bytes to be read.

Data Transfer Rate
To achieve the high data transfer rate that the GPIB was designed for, you
must limit the number of devices on the bus and the physical distance
between devices.

You can obtain faster data rates with HS488 devices and controllers. HS488
is an extension to GPIB that most NI controllers support.

Note Refer to the National Instruments GPIB support Web site at ni.com/support/
gpibsupp.htm for more information about GPIB.

C. Serial Port Communication
Serial communication transmits data between a computer and a peripheral
device, such as a programmable instrument or another computer. Serial
communication uses a transmitter to send data one bit at a time over a single
communication line to a receiver. Use this method when data transfer rates
are low or you must transfer data over long distances. Most computers have
one or more serial ports, so you do not need any extra hardware other than
a cable to connect the instrument to the computer or to connect two
computers to each other.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-4 ni.com

Figure 9-1. Serial Instrument Example

You must specify four parameters for serial communication: the baud rate
of the transmission, the number of data bits that encode a character, the
sense of the optional parity bit, and the number of stop bits. A character
frame packages each transmitted character as a single start bit followed by
the data bits.

Baud rate is a measure of how fast data moves between instruments that use
serial communication.

Data bits are transmitted upside down and backwards, which means that
inverted logic is used and the order of transmission is from least significant
bit (LSB) to most significant bit (MSB). To interpret the data bits in a
character frame, you must read from right to left and read 1 for negative
voltage and 0 for positive voltage.

An optional parity bit follows the data bits in the character frame. The parity
bit, if present, also follows inverted logic. This bit is included as a means of
error checking. You specify ahead of time for the parity of the transmission
to be even or odd. If you choose for the parity to be odd, the parity bit is set
in such a way so the number of 1s add up to make an odd number among the
data bits and the parity bit.

The last part of a character frame consists of 1, 1.5, or 2 stop bits that are
always represented by a negative voltage. If no further characters are
transmitted, the line stays in the negative (MARK) condition. The
transmission of the next character frame, if any, begins with a start bit of
positive (SPACE) voltage.

The following figure shows a typical character frame encoding the letter m.

1 RS-232 Instrument 2 RS-232 Cable 3 Serial Port

76.6F

1

3

2

Lesson 9 Instrument Control

© National Instruments Corporation 9-5 LabVIEW Introduction Course Manual

Figure 9-2. Character Frame for the Letter M

RS-232 uses only two voltage states, called MARK and SPACE. In such a
two-state coding scheme, the baud rate is identical to the maximum number
of bits of information, including control bits, that are transmitted per second.

MARK is a negative voltage, and SPACE is positive. The previous
illustration shows how the idealized signal looks on an oscilloscope.
The following is the truth table for RS-232:

Signal > +3 V = 0

Signal < –3 V = 1

The output signal level usually swings between +12 V and –12 V. The dead
area between +3 V and –3 V is designed to absorb line noise.

A start bit signals the beginning of each character frame. It is a transition
from negative (MARK) to positive (SPACE) voltage. Its duration in
seconds is the reciprocal of the baud rate. If the instrument is transmitting at
9,600 baud, the duration of the start bit and each subsequent bit is about
0.104 ms. The entire character frame of eleven bits would be transmitted
in about 1.146 ms.

Interpreting the data bits for the transmission yields 1101101 (binary) or
6D (hex). An ASCII conversion table shows that this is the letter m.

This transmission uses odd parity. There are five ones among the data bits,
already an odd number, so the parity bit is set to 0.

Data Transfer Rate
You can calculate the maximum transmission rate in characters per second
for a given communication setting by dividing the baud rate by the bits per
character frame. In the previous example, there are a total of eleven bits per
character frame. If the transmission rate is set at 9,600 baud, you get 9,600/
11 = 872 characters per second. Notice that this is the maximum character

Idle

Space

Mark

Bit Time

Character Frame

Start
Bit

Data
Bits

Parity
Bit

Stop
Bits

Idle

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-6 ni.com

transmission rate. The hardware on one end or the other of the serial link
might not be able to reach these rates, for various reasons.

Serial Port Standards
The following examples are the most common recommended standards of
serial port communication:

• RS-232 (ANSI/EIA-232 Standard) is used for many purposes, such as
connecting a mouse, printer, or modem. It also is used with industrial
instrumentation. Because of improvements in line drivers and cables,
applications often increase the performance of RS-232 beyond the
distance and speed in the standards list. RS-232 is limited to point-to-
point connections between PC serial ports and devices.

• RS-422 (AIA RS-422A Standard) uses a differential electrical signal as
opposed to the unbalanced (single-ended) signals referenced to ground
with RS-232. Differential transmission, which uses two lines each to
transmit and receive signals, results in greater noise immunity and
longer transmission distances as compared to RS-232.

• RS-485 (EIA-485 Standard) is a variation of RS-422 that allows you to
connect up to 32 devices to a single port and define the necessary
electrical characteristics to ensure adequate signal voltages under
maximum load. With this enhanced multidrop capability, you can create
networks of devices connected to a single RS-485 serial port. The noise
immunity and multidrop capability make RS-485 an attractive choice in
industrial applications that require many distributed devices networked
to a PC or other controller for data collection and other operations.

D. Using Other Interfaces
There are devices made to communicate with serial or GPIB instruments
through the Ethernet, USB, or IEEE 1394 (FireWire) ports, which bypasses
the need for a serial port or GPIB board on your computer. When using these
devices, program them just as you would if they were using the serial port
or a GPIB board.

USB and ethernet interfaces transform USB ports or ethernet ports into
asynchronous serial ports for communication with serial instruments. You
can install and use these interfaces as standard serial ports from your
existing applications.

USB, ethernet, and IEEE 1394 controllers transform any computer with
these ports into a full-function, Plug and Play, IEEE-488.2 Controller that
can control up to 14 programmable GPIB instruments.

Lesson 9 Instrument Control

© National Instruments Corporation 9-7 LabVIEW Introduction Course Manual

E. Software Architecture
The software architecture for instrument control using LabVIEW is similar
to the architecture for DAQ. Instrument interfaces such as GPIB include a
set of drivers. Use MAX to configure the interface. VISA, Virtual
Instrument Software Architecture, is a common API to communicate with
the interface drivers and is the preferred method used when programming
for instrument control in LabVIEW, because VISA abstracts the type of
interface used. Many LabVIEW VIs used for instrument control use the
VISA API. For example, the Instrument I/O Assistant is a LabVIEW
Express VI that can use VISA to communicate with message-based
instruments and convert the response from raw data to an ASCII
representation. Use the Instrument I/O Assistant when an instrument driver
is not available. In LabVIEW, an instrument driver is a set of VIs specially
written to communicate with an instrument.

Note GPIB drivers are available on the LabVIEW Installer CD-ROM and most GPIB
drivers are available for download at ni.com/support/gpib/versions.htm.
Always install the newest version of these drivers unless otherwise instructed in the
release notes.

MAX (Windows; GPIB)
(Windows) Use MAX to configure and test the GPIB interface. MAX
interacts with the various diagnostic and configuration tools installed with
the driver and also with the Windows Registry and Device Manager. The
driver-level software is in the form of a DLL and contains all the functions
that directly communicate with the GPIB interface. The Instrument I/O VIs
and functions directly call the driver software.

Note (Mac OS and UNIX) Refer to documentation supplied with your GPIB interface
device for information about configuring and testing the interface.

Open MAX by double-clicking the icon on the desktop or by selecting
Tools»Measurement & Automation Explorer in LabVIEW. The
following example shows a GPIB interface in MAX after clicking the Scan
For Instruments button on the toolbar.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-8 ni.com

Figure 9-3. GPIB Interface in Measurement and Automation Explorer

Configure the objects listed in MAX by right-clicking each item and
selecting an option from the shortcut menu. You learn to use MAX to
configure and communicate with a GPIB instrument in the next exercise.

Lesson 9 Instrument Control

© National Instruments Corporation 9-9 LabVIEW Introduction Course Manual

Exercise 9-1 Concept: GPIB Configuration with MAX

Goal
Learn to configure the NI Instrument Simulator and use MAX to examine
the GPIB interface settings, detect instruments, and communicate with an
instrument.

Description

1. Configure the NI Instrument Simulator.

❑ Power off the NI Instrument Simulator.

❑ Set the left bank of switches on the side of the box to match
Figure 9-4.

❑ Power on the NI Instrument Simulator.

❑ Verify that both the Power and Ready LEDs are lit.

Figure 9-4. GPIB Configuration Settings for the NI Instrument Simulator

2. Launch MAX by either double-clicking the icon on the desktop or by
selecting Tools»Measurement & Automation Explorer in LabVIEW.

3. View the settings for the GPIB interface.

❑ Expand the Devices and Interfaces section to display the installed
interfaces. If a GPIB interface is listed, the NI-488.2 software is
correctly loaded on the computer.

❑ Select the GPIB interface and click the Properties button on the
toolbar to display the Properties dialog box.

❑ Examine but do not change the settings for the GPIB interface.

❑ Click the OK button to close the dialog box.

1 GPIB Address 2 G Mode

OFF

ON

1

2

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-10 ni.com

4. Communicate with the GPIB instrument.

❑ Make sure the GPIB interface is still selected in the Devices and
Interfaces section.

❑ Click the Scan for Instruments button on the toolbar.

❑ Expand the GPIB interface that is selected in the Devices and
Interfaces section. One instrument named Instrument0 appears.

❑ Click Instrument0 to display information about it in the right pane
of MAX. Notice that the NI Instrument Simulator has a GPIB
primary address (PAD) of 2.

❑ Click the Communicate with Instrument button on the toolbar.
An interactive window appears. You can use it to query, write to,
and read from that instrument.

❑ Enter *IDN? in Send String and click the Query button.
The instrument returns its make and model number in String
Received as shown in Figure 9-5. You can use this window to debug
instrument problems or to verify that specific commands work as
described in the instrument documentation.

Figure 9-5. Communication with the GPIB instrument

❑ Enter MEAS:DC? in Send String and click the Query button.
The NI Instrument Simulator returns a simulated voltage
measurement.

❑ Click the Query button again to return a different value.

❑ Click the Exit button when done.

Lesson 9 Instrument Control

© National Instruments Corporation 9-11 LabVIEW Introduction Course Manual

5. Set a VISA alias of devsim for the NI Instrument Simulator so you can
use the alias instead of having to remember the primary address.

❑ While Instrument0 is selected in MAX, select the VISA
Properties tab.

❑ Enter devsim in the VISA Alias on My System field. You will
use this alias throughout this lesson.

6. Select File»Exit to exit MAX.

7. Click Yes when prompted to save the instrument.

End of Exercise 9-1

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-12 ni.com

F. Instrument I/O Assistant
The Instrument I/O Assistant is a LabVIEW Express VI which you can use
to communicate with message-based instruments and convert the response
from raw data to an ASCII representation. You can communicate with an
instrument that uses a serial, Ethernet, or GPIB interface. Use the
Instrument I/O Assistant when an instrument driver is not available.

The Instrument I/O Assistant organizes instrument communication into
ordered steps. To use Instrument I/O Assistant, you place steps into a
sequence. As you add steps to the sequence, they appear in the Step
Sequence window. Use the view associated with a step to configure
instrument I/O.

To launch the Instrument I/O Assistant, place the Instrument I/O Assistant
Express VI on the block diagram in LabVIEW. The Instrument I/O
Assistant Express VI is available in the Instrument I/O category of the
Functions palette. The Instrument I/O Assistant configuration dialog box
appears. If it does not appear, double-click the Instrument I/O Assistant
icon. Complete the following steps to configure the Instrument I/O
Assistant.

1. Select an instrument. Instruments that have been configured in MAX
appear in the Select an instrument pull-down menu.

2. Choose a Code generation type. VISA code generation allows for more
flexibility and modularity than GPIB code generation.

3. Select from the following communication steps using the Add Step
button:

• Query and Parse—Sends a query to the instrument, such as *IDN?
and parses the returned string. This step combines the Write
command and Read and Parse command.

• Write—Sends a command to the instrument.

• Read and Parse—Reads and parses data from the instrument

4. After adding the desired number of steps, click the Run button to test
the sequence of communication that you have configured for the
Express VI.

5. Click the OK button to exit the Instrument I/O Assistant configuration
dialog box.

LabVIEW adds input and output terminals to the Instrument I/O Assistant
Express VI on the block diagram that correspond to the data you receive
from the instrument.

To view the code generated by the Instrument I/O Assistant, right-click the
Instrument I/O Assistant icon and select Open Front Panel from the

Lesson 9 Instrument Control

© National Instruments Corporation 9-13 LabVIEW Introduction Course Manual

shortcut menu. This converts the Express VI to a subVI. Switch to the block
diagram to see the code generated.

Note After you convert an Express VI to a subVI, you cannot reconvert the Express VI.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-14 ni.com

Exercise 9-2 Concept: Instrument I/O Assistant

Goal
Configure a serial or GPIB instrument and communicate with the
instrument using the Instrument I/O Assistant.

For serial, follow the instructions in part A of this exercise.

For GPIB, follow the instructions in part B of this exercise.

Part A: Serial Description

1. Configure the NI Instrument Simulator to communicate through the
serial port.

❑ Power off the NI Instrument Simulator.

❑ Set the left bank of switches on the side of the box to match Figure 9-
6.

Figure 9-6. Serial Configuration Settings for the NI Instrument Simulator

❑ Make sure the NI Instrument Simulator is connected to a serial port
on the computer with a serial cable.

❑ Make a note of the port number.

❑ Power on the NI Instrument Simulator.

❑ Verify that the Power, Ready, and Listen LEDs are lit to indicate that
the device is in serial communication mode.

You build a block diagram similar to the one in Figure 9-7 in the following
steps.

1 S Mode 2 Data Format 3 Baud Rate

OFF

ON

3

2

1

Lesson 9 Instrument Control

© National Instruments Corporation 9-15 LabVIEW Introduction Course Manual

Figure 9-7. IIOASerial VI Block Diagram

2. Open a blank VI.

3. Save the VI as Serial IIOA Read.vi in the C:\Exercises\
LabVIEW Basics I\Instrument IO Assistant directory.

4. Open the block diagram.

5. Configure the Instrument I/O Express VI to communicate with the NI
Instrument Simulator.

6. Place the Instrument I/O Express VI on the block diagram. The
Instrument I/O Assistant dialog box appears.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-16 ni.com

Figure 9-8. Serial Configuration of the Instrument I/O Assistant

❑ From the Select an instrument pull-down menu, choose COM1 (or
COM2 depending on the connection port of the NI Instrument
Simulator).

❑ Click the Add Step button.

❑ Click Write.

❑ In the command field, enter *IDN?.

❑ Click the Add Step button.

❑ Click Read and Parse.

Note The Instrument Simulator returns the byte size of the response, the termination
character, the response, then another termination character. Therefore, after *IDN? is
sent to the instrument, the response must be read twice; once to retrieve the size of the
response, and once to retrieve the response.

Lesson 9 Instrument Control

© National Instruments Corporation 9-17 LabVIEW Introduction Course Manual

❑ Click the Add Step button.

❑ Click Read and Parse again.

❑ Click the Run button (not the Run this step button). The Run
button runs the entire sequence.

❑ Return to the first Read and Parse step.

❑ Click the Auto parse button. The value returned is the size in bytes
of the query response.

❑ Rename Token to String Length in the Token name text box.

❑ Select the second Read and Parse step.

❑ Click the Auto parse button. The value returned is the identification
string of the NI Instrument Simulator.

❑ Rename Token to String in the Token name text box. The
configuration window should be similar to Figure 9-8.

❑ Select OK to return to the block diagram.

7. Create an indicator for the response from the instrument.

❑ Right-click the String terminal.

❑ Select Create»Indicator from the shortcut menu.

8. Create an indicator for the response length from the instrument.

❑ Right-click the String Length terminal.

❑ Select Create»Indicator from the shortcut menu.

Tip To allow LabVIEW to handle errors automatically, do not connect a Simple Error
Handler VI to error out.

9. Display the front panel. It should be similar to Figure 9-9.

Figure 9-9. IIOASerial VI Front Panel

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-18 ni.com

10. Save the VI.

11. Run the VI.

12. Examine the code generated by the I/O Assistant.

❑ Right-click the I/O Assistant and select Open Front Panel.

❑ Click the Convert button when asked if you want to convert to a
subVI.

❑ View the code generated by the I/O Assistant. Where is the
command *IDN? written to the Instrument Simulator? Where is the
voltage being read?

❑ Select File»Exit to exit the subVI. Do not save changes.

13. Close the VI when finished.

Part B: GPIB Description

1. Configure the NI Instrument Simulator to communicate through the
GPIB interface.

❑ Power off the NI Instrument Simulator.

❑ Set the left bank of switches on the side of the box to match Figure 9-
10.

Figure 9-10. GPIB Configuration Settings for the NI Instrument Simulator

❑ Make sure the NI Instrument Simulator is connected to the GPIB
board.

❑ Power on the NI Instrument Simulator.

❑ Verify that both the Power and Ready LEDs are lit.

1 GPIB Address 2 G Mode

OFF

ON

1

2

Lesson 9 Instrument Control

© National Instruments Corporation 9-19 LabVIEW Introduction Course Manual

2. Open a blank VI.

3. Save the VI as GPIB IIOA Read.vi in the C:\Exercises\
LabVIEW Basics I\Instrument IO Assistant directory.

You build a block diagram similar to the one in Figure 9-11 in the following
steps.

Figure 9-11. IIOAGPIB VI Block Diagram

4. Open the block diagram.

5. Configure the Instrument I/O Express VI to communicate with the NI
Instrument Simulator.

6. Place the Instrument I/O Express VI on the block diagram. The
Instrument I/O Assistant dialog box appears.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-20 ni.com

Figure 9-12. GPIB Configuration of the Instrument I/O Assistant

❑ Select devsim from the Select an instrument pull-down menu.

❑ Select VISA Code Generation from the Code generation type
pull-down menu.

❑ Click the Add Step button.

❑ Click Query and Parse to write and read from the Instrument
Simulator.

❑ Enter *IDN? as the command.

❑ Click the Run this step button. If no error warning appears in the
lower half of the dialog box, this step has successfully completed.

❑ To parse the data received, click the Auto parse button.

❑ Rename Token by typing ID String in the Token name text box.

❑ Click the Add Step button.

Lesson 9 Instrument Control

© National Instruments Corporation 9-21 LabVIEW Introduction Course Manual

❑ Click Query and Parse.

❑ Enter MEAS:DC? as the command.

❑ Click the Run this step button.

❑ To parse the data received, click the Auto parse button. The data
returned is a random numeric value.

❑ Rename Token by typing Voltage in the Token name text box.
The configuration window should be similar to Figure 9-12.

❑ Click the OK button to exit the I/O Assistant and return to the block
diagram.

7. Create an indicator for the ID String.

❑ Right-click the ID String terminal and select Create»Indicator
from the shortcut menu.

8. Create an indicator for the voltage.

❑ Right-click the Voltage terminal and select Create»Indicator from
the shortcut menu.

Tip To allow LabVIEW to handle errors automatically, do not connect a Simple Error
Handler VI to error out.

9. Display the front panel. The front panel should be similar to the front
panel in Figure 9-13.

Figure 9-13. IIOAGPIB VI Front Panel

10. Save the VI.

11. Run the VI. Resize the string indicator if necessary.

12. Examine the code generated by the I/O Assistant.

❑ Right-click the I/O Assistant and select Open Front Panel.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-22 ni.com

❑ Click the Convert button when prompted to convert to a subVI.

❑ View the code generated by the I/O Assistant. Where is the
command *IDN? written to the Instrument Simulator? Where is the
voltage being read?

❑ Select File»Exit to exit the subVI. Do not save changes.

13. Close the VI when finished.

End of Exercise 9-2

Lesson 9 Instrument Control

© National Instruments Corporation 9-23 LabVIEW Introduction Course Manual

G. VISA
Virtual Instrument Software Architecture (VISA) is the lower layer of
functions in the LabVIEW instrument driver VIs that communicates with
the driver software. VISA by itself does not provide instrumentation
programming capability. VISA is a high-level API that calls low-level
drivers. VISA can control VXI, GPIB, serial, or computer-based
instruments and makes the appropriate driver calls depending on the type of
instrument used. When debugging VISA problems, remember that an
apparent VISA problem could be an installation problem with one of the
drivers that VISA calls.

In LabVIEW, VISA is a single library of functions you use to communicate
with GPIB, serial, VXI, and computer-based instruments. You do not need
to use separate I/O palettes to program an instrument. For example, some
instruments give you a choice for the type of interface. If the LabVIEW
instrument driver were written with functions on the Functions»All
Functions»Instrument I/O»GPIB palette, those instrument driver VIs
would not work for the instrument with the serial port interface.
VISA solves this problem by providing a single set of functions that work
for any type of interface. Therefore, many LabVIEW instrument drivers use
VISA as the I/O language.

VISA Programming Terminology
The following terminology is similar to that used for instrument driver VIs:

• Resource—Any instrument in the system, including serial and
parallel ports.

• Session—You must open a VISA session to a resource to communicate
with it, similar to a communication channel. When you open a session
to a resource, LabVIEW returns a VISA session number, which is a
unique refnum to that instrument. You must use the session number in
all subsequent VISA functions.

• Instrument Descriptor—Exact name of a resource. The descriptor
specifies the interface type (GPIB, VXI, ASRL), the address of the
device (logical address or primary address), and the VISA session
type (INSTR or Event).

The instrument descriptor is similar to a telephone number, the resource
is similar to the person with whom you want to speak, and the session is
similar to the telephone line. Each call uses its own line, and crossing these
lines results in an error. Table 9-1 shows the proper syntax for the instrument
descriptor.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-24 ni.com

You can use an alias you assign in MAX instead of the instrument
descriptor. (Mac OS) Edit the visaconf.ini file to assign a VISA alias.
(UNIX) Use the visaconf utility.

If you choose not to use the Instrument I/O Assistant to automatically
generate code for you, you can still write a VI to communicate with the
instrument. The most commonly used VISA communication functions are
the VISA Write and VISA Read functions. Most instruments require you to
send information in the form of a command or query before you can read
information back from the instrument. Therefore, the VISA Write function
is usually followed by a VISA Read function. The VISA Write and VISA
Read functions work with any type of instrument communication and are
the same whether you are doing GPIB or serial communication. However,
because serial communication requires you to configure extra parameters,
you must start the serial port communication with the VISA Configure
Serial Port VI.

VISA and Serial
The VISA Configure Serial Port VI initializes the port identified by VISA
resource name to the specified settings. Timeout sets the timeout value for
the serial communication. Baud rate, data bits, parity, and flow control
specify those specific serial port parameters. The error in and error out
clusters maintain the error conditions for this VI.

Figure 9-14 shows how to send the identification query command *IDN? to
the instrument connected to the COM2 serial port. The VISA Configure
Serial Port VI opens communication with COM2 and sets it to 9,600 baud,
eight data bits, odd parity, one stop bit, and XON/XOFF software
handshaking. Then, the VISA Write function sends the command. The
VISA Read function reads back up to 200 bytes into the read buffer, and the
Simple Error Handler VI checks the error condition.

Table 9-1. Syntax for Various Instrument Interfaces

Interface Syntax

Asynchronous serial ASRL[board][::INSTR]

GPIB GPIB[board]::primary address[::secondary
address][::INSTR]

VXI instrument through embedded
or MXIbus controller

VXI[board]::VXI logical address[::INSTR]

GPIB-VXI controller GPIB-VXI[board][::GPIB-VXI primary
address]::VXI logical address[::INSTR]

Lesson 9 Instrument Control

© National Instruments Corporation 9-25 LabVIEW Introduction Course Manual

Figure 9-14. Configuring serial for VISA example

Note The VIs and functions located on the Functions»All Functions»Instrument I/O»
Serial palette are also used for parallel port communication. You specify the VISA
resource name as being one of the LPT ports. For example, you can use MAX to
determine that LPT1 has a VISA resource name of ASRL10::INSTR.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-26 ni.com

Exercise 9-3 VISA Write & Read VI

Goal
Communicate with a serial or GPIB interface to an instrument using VISA
functions.

Description
This VI uses VISA to communicate with either a serial or a GPIB interface
to an instrument. The VI can send one buffer of data to the instrument, and
read one buffer back. If using GPIB, the user specifies how many bytes to
read from the bus. If using serial, the VI determines how many bytes are
available, and reads them all.

1. Open the VISA Write & Read.vi in the C:\Exercises\
LabVIEW Basics I\VISA Write & Read directory.

Figure 9-15. VISA Write & Read VI Front Panel

2. Open the block diagram of the VI and examine the code. The GPIB
portion is shown in Figure 9-16.

Figure 9-16. GPIB portion of the VISA Write & Read VI Block Diagram

Lesson 9 Instrument Control

© National Instruments Corporation 9-27 LabVIEW Introduction Course Manual

Follow the instructions in the Test A: Serial section to communicate through
the serial port. Follow the instructions in the Test B: GPIB section to
communicate through the GPIB port.

Test A: Serial
1. Configure the NI Instrument Simulator to communicate through the

serial port. It may still be set up from the last exercise.

❑ Power off the NI Instrument Simulator.

❑ Set the left bank of switches on the side of the box to match Figure 9-
17.

Figure 9-17. Serial Configuration Settings for the NI Instrument Simulator

❑ Make sure the NI Instrument Simulator is connected to a serial port.

❑ Power on the NI Instrument Simulator.

❑ Verify that the Power, Ready and Listen LEDs are lit.

2. Enter values into the controls in preparation for communicating with the
instrument. You do not need to enter a value in the byte count, as this
control is only used for GPIB communication.

❑ Select the serial port in the VISA resource name control.

❑ Select Serial from the Hardware Type enumerated control.

❑ Enter *IDN? in the write buffer.

3. Run the VI.

4. The top of the instrument simulator lists other commands that are
recognized by this instrument. Try other commands in this VI.

5. Close the VI when finished.

1 S Mode 2 Data Format 3 Baud Rate

OFF

ON

3

2

1

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-28 ni.com

Test B: GPIB
1. Configure the NI Instrument Simulator to communicate through the

GPIB interface.

❑ Power off the NI Instrument Simulator.

❑ Set the left bank of switches on the side of the box to match Figure 9-
18.

Figure 9-18. GPIB Configuration Settings for the NI Instrument Simulator

❑ Make sure the NI Instrument Simulator is connected to the GPIB
board.

❑ Power on the NI Instrument Simulator.

❑ Verify that both the Power and Ready LEDs are lit.

2. Enter values into the controls in preparation for communicating with the
instrument.

❑ Select devsim in the VISA resource name control.

❑ Select GPIB from the Hardware Type enumerated control.

❑ Enter *IDN? in the write buffer.

3. Run the VI.

4. The top of the instrument simulator lists other commands that are
recognized by this instrument. Try other commands in this VI.

5. Close the VI when finished.

End of Exercise 9-3

1 GPIB Address
Set the GPIB Address

2 G Mode
GPIB Mode

OFF

ON

1

2

Lesson 9 Instrument Control

© National Instruments Corporation 9-29 LabVIEW Introduction Course Manual

H. Instrument Drivers
Imagine the following scenario. You wrote a LabVIEW VI that
communicates with a specific oscilloscope in your lab. Unfortunately, the
oscilloscope no longer works, and you must replace it. However, this
particular oscilloscope is no longer made. You found a different brand of
oscilloscope that you want to purchase, but your VI no longer works with
the new oscilloscope. You must rewrite your VI.

When you use an instrument driver, the driver contains the code specific to
the instrument. Therefore, if you change instruments, you must replace only
the instrument driver VIs with the instrument driver VIs for the new
instrument, which greatly reduces your redevelopment time. Instrument
drivers help make test applications easier to maintain because the drivers
contain all the I/O for an instrument in one library, separate from other code.
When you upgrade hardware, upgrading the application is easier because
the instrument driver contains all the code specific to that instrument.

What Is an Instrument Driver?
A LabVIEW Plug and Play instrument driver is a set of VIs that control a
programmable instrument. Each VI corresponds to an instrument operation,
such as configuring, triggering, and reading measurements from the
instrument. Instrument drivers help users get started using instruments from
a PC and saves them development time and cost because users do not need
to learn the programming protocol for each instrument. With open-source,
well documented instrument drivers, end users can customize their
operation for better performance. A modular design makes the driver easier
to customize.

Where Do I Find Instrument Drivers?
You can locate most LabVIEW Plug and Play instrument driver in the
Instrument Driver Finder. You can access the Instrument Driver Finder
within LabVIEW by selecting Tools»Instrumentation»Find Instrument
Drivers or Help»Find Instrument Drivers. The Instrument Driver Finder
connects you with ni.com to find instrument drivers. When you install an
instrument driver, an example program using the driver is added to the NI
Example Finder.

Example Instrument Driver VI
The block diagram in Figure 9-19 initializes the Agilent 34401 digital
multimeter (DMM), uses a configuration VI to choose the resolution and
range, select the function, and enable or disable auto range, uses a data VIs
to read a single measurement, closes the instrument, and checks the error
status. Every application that uses an instrument driver has a similar
sequence of events: Initialize, Configure, Data, and Close.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-30 ni.com

Figure 9-19. Agilent 34401 DMM Instrument Driver Example

This is an example program that is available in the NI Example Finder when
you install the LabVIEW Plug and Play instrument driver for the Agilent
34401 DMM.

How Do Instrument Drivers Work?
Many programmable instruments have a large number of functions and
modes. With this complexity, it is necessary to provide a consistent design
model that aids both instrument driver developers as well as end users who
develop instrument control applications. The LabVIEW Plug and Play
instrument driver model contains both external structure and internal
structure guidelines. The external structure shows how the instrument driver
interfaces with the user and to other software components in the system. The
internal structure shows the internal organization of the instrument driver
software module.

For the external structure of the instrument driver, the user interacts with the
instrument driver using an API or an interactive interface. Usually, the
interactive interface is used for testing or for end-users. The API is accessed
through LabVIEW. The instrument driver communicates with the
instrument using VISA.

Internally, the VIs in an instrument driver are organized into six categories.
These categories are summarized in the following table.

Category Description

Initialize The initialize VI establishes communication with
the instrument and is the first instrument driver VI
called.

Lesson 9 Instrument Control

© National Instruments Corporation 9-31 LabVIEW Introduction Course Manual

Configure This collection of VIs are software routines that
configure the instrument to perform specific
operations. After calling these VIs, the instrument
is ready to take measurements or stimulate a
system.

Action/Status This collection of VIs command the instrument to
carry out an action (i.e. arming a trigger) or obtain
the current status of the instrument or pending
operations.

Data The data VIs transfer data to or from the
instrument.

Utility THis collection of VIs perform a variety of
auxiliary operations, such as reset and self-test.

Close The close VI terminates the software connection to
the instrument. This is the last instrument driver VI
called.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-32 ni.com

Exercise 9-4 Concept: Instrument Driver

Goal
Install an instrument driver and explore the example programs that
accompany the instrument driver.

Description
In this exercise, you install the instrument driver the NI Instrument
Simulator. After installation, you explore the VIs that the instrument driver
provides and the example programs that are added to the NI Example
Finder.

Install Instrument Driver
1. Exit LabVIEW.

2. Navigate to the C:\Exercises\LabVIEW Basics I\Instrument
Driver directory. This folder contains the LabVIEW Plug and Play
instrument driver for the Instrument Simulator.

3. Double-click the NI Instrument Simulator Zip folder to extract the
contents.

4. Copy the folder that was extracted.

5. Navigate to the C:\Program Files\National Instruments\
LabVIEW 8.0\instr.lib directory.

6. Paste the copied folder in this directory.

Explore Instrument Driver
7. Start LabVIEW.

8. Open a blank VI.

9. Switch to the block diagram.

10. Navigate to the Instrument I/O»Instrument Drivers»NI Instrument
Simulator category of the Functions palette.

11. Explore the palette using the Context Help window to familiarize
yourself with the functionality.

Use Example Programs
12. Select Help»Find Examples to start the NI Example Finder.

Lesson 9 Instrument Control

© National Instruments Corporation 9-33 LabVIEW Introduction Course Manual

13. Confirm that you are browsing according to task.

14. Navigate to Hardware Input and Output»Instrument
Drivers»LabVIEW Plug and Play in the task structure.

15. Double-click NI Instrument Simulator Read DMM Measurement.vi
to open the example program. This VI reads a single measurement from
the Instrument Simulator.

16. Prepare the Instrument Simulator. This VI can communicate with the
instrument through serial or GPIB.

❑ To communicate through serial, set the Instrument Simulator
switches as shown in Figure 9-20.

Figure 9-20. Serial Configuration Settings for the NI Instrument Simulator

❑ To communicate through GPIB, set the Instrument Simulator
switches as shown in Figure 9-21.

Figure 9-21. GPIB Configuration Settings for the NI Instrument Simulator

17. Select the communication type on the VISA Resource Name control.

❑ If you are using serial, select the resource (COM1 or COM2) that the
serial cable is connected to.

1 S Mode 2 Data Format 3 Baud Rate

1 GPIB Address
Set the GPIB Address

2 G Mode
GPIB Mode

OFF

ON

3

2

1

OFF

ON

1

2

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-34 ni.com

❑ If you are using GPIB, select the devsim VISA alias.

18. Run the VI.

19. Explore the block diagram of the VI. Do not save changes.

20. Close the VI.

21. Return to the NI Example Finder.

22. Double-click NI Instrument Simulator Read Oscilloscope
Waveform.vi to open the next example program. This VI read a single
waveform from the Instrument Simulator.

23. Select the same VISA Resource Name you selected in Step 17.

24. Run the VI.

25. Choose a different Waveform Function.

26. Run the VI again.

27. Explore the block diagram of the VI.

28. Close the VI and the NI Example Finder when you are finished. Do not
save changes.

End of Exercise 9-4

Lesson 9 Instrument Control

© National Instruments Corporation 9-35 LabVIEW Introduction Course Manual

Self Review: Quiz

1. Which instrument interface does not use the VISA API?

a. Serial

b. Parallel

c. GPIB

d. Ethernet

2. What API does the Instrument I/O Assistant use?

a. C

b. Visual Basic

c. VISA

d. NI-DAQmx

3. Which of the following is a way to inform listeners that all data has been
transferred?

a. Asserting the End or Identify (EOI) line.

b. Placing a end-of-string (EOS) character at the beginning of the data
being transferred.

c. Using the VISA Close function.

d. Turning off the power to the controller.

Lesson 9 Instrument Control

© National Instruments Corporation 9-37 LabVIEW Introduction Course Manual

Self Review: Quiz Answers

1. Which instrument interface does not use the VISA API?

a. Serial

b. Parallel

c. GPIB

d. Ethernet

2. What API does the Instrument I/O Assistant use?

a. C

b. Visual Basic

c. VISA

d. NIDAQmx

3. Which of the following is a way to inform listeners that all data has been
transferred?

a. Asserting the End or Identify (EOI) line.

b. Placing a end-of-string (EOS) character at the beginning of the data
being transferred.

c. Using the VISA Close function.

d. Turning off the power to the controller.

Lesson 9 Instrument Control

LabVIEW Introduction Course Manual 9-38 ni.com

Notes

© National Instruments Corporation 10-1 LabVIEW Introduction Course Manual

10
Analyzing and Storing Measurement
Data

You have learned how to acquire data and how to display it, but analysis and
storage of your data is usually a very important part of any project. In this
lesson, you learn about manipulating strings, analyzing numerical data,
processing signals, and storing ASCII data.

Topics

A. Analyzing and Processing Numeric Data

B. Reading and Writing Data to File

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-2 ni.com

A. Analyzing and Processing Numeric Data
Users generally start their work by acquiring data into an application or
program, because their tasks typically require interaction with physical
processes. In order to extract valuable information from that data, make
decisions on the process, and obtain results, the data needs to be
manipulated and analyzed.

As an engineering-focused tool, LabVIEW includes hundreds of analysis
functions. You can build these functions right into your applications to
make intelligent measurements and obtain results faster.

Choosing the Correct Method for Analysis
Users incorporate analysis into their applications and programs in different
ways. There are certain considerations that help determine the way in which
analysis should be performed.

Inline vs. Offline Analysis
Inline analysis implies that you analyze the data within the same application
where you acquired it. This is generally the case when dealing with
applications where decisions have to be made during run time and the
results have direct consequences on the process, typically through the
changing of parameters or executing of actions. This is typically the case in
control applications. When dealing with inline analysis, it is important to
consider the amount of data acquired and the particular analysis routines
that are performed on that data. A proper balance must be found because
they could easily become computationally intensive and have an adverse
effect on the performance of the application.

Other examples for inline analysis are applications where the parameters of
the measurement need to be adapted to the characteristics of the measured
signal. One case is where one or more signals need to be logged, but these
change very slowly except for sudden bursts of high-speed activity. In order
to reduce the amount of data logged, the application would have to quickly
recognize the need for a higher sampling rate, and reduce it when the burst
is over. By measuring and analyzing certain aspects of the signal, the
application can adapt to the circumstances and enable the appropriate
execution parameters. Although this is only one example, there are
thousands of applications where a certain degree of intelligence – the ability
to make decisions based on various conditions – and adaptability are
required, which can only be provided by adding analysis algorithms to the
application.

Decisions based on acquired data are not always made in an automated
manner. Very frequently, those involved with the process need to monitor
the execution and determine whether it is performing as expected or if one

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-3 LabVIEW Introduction Course Manual

or more variables need to be adjusted. Although it is not uncommon for
users to log data, extract it from a file or database and then analyze it offline
to modify the process, many times the changes need to happen during run
time. In these cases, the application must handle the data coming from the
process, and then manipulate, simplify, format, and present the data in a way
that it is most useful to the user.

LabVIEW offers analysis routines for point-by-point execution; these
routines are designed specifically to meet the needs of inline analysis in
real-time applications. Point-by-point analysis is essential when dealing
with control processes where high-speed, deterministic, point-by-point data
acquisition is present. Any time resources are dedicated to real-time data
acquisition, point-by-point analysis becomes a necessity as acquisition rates
and control loops are increased by orders of magnitude. The point-by-point
approach simplifies the design, implementation, and testing process,
because the flow of the application closely matches the natural flow of the
real-world processes that the application is monitoring and controlling.
Point-by-point analysis is streamlined and stable, because it ties directly into
the acquisition and analysis process.

Use offline analysis when the results do not need to be obtained in real-time
fashion in order to make decisions on the process. Offline analysis
applications require only that sufficient computational resources are
available. The main intent of such applications is to identify cause and effect
of variables affecting a process by correlating multiple data sets. These
applications generally require importing data from custom binary or ASCII
files and commercial databases such as Oracle, Access, and other SQL/
ODBC-enabled databases. After the data is imported into LabVIEW, users
perform several or hundreds of available analysis routines, manipulate the
data, and arrange it in a specific format for reporting purposes.

Programmatic vs. Interactive Analysis
Acquiring data and processing it for the sake of online visualization is not
enough. Users typically store hundreds or thousands of megabytes of data
in hard drives and data bases. After anywhere from one to hundreds of runs
of the application, users proceed to extract information in order to make
decisions, compare results, and make appropriate changes to the process,
until the desired results are achieved. It is relatively easy to acquire amounts
of data so large that it rapidly becomes unmanageable. In fact, with a fast
DAQ board and enough channels, it may only take a few milliseconds to
compile thousands of values. It is not a trivial task to make sense out of all
that data. Engineers and scientists are typically expected to present reports,
create graphs, and ultimately corroborate any assessments and conclusions
with empirical data.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-4 ni.com

In order to simplify the process of analyzing measurements, you can create
applications that provide dialogs and interfaces that others can use so that
depending on their input, specific analysis routines are performed on any
given data set. By building this type of application, users build a certain
degree of interactively into their applications. For this to be efficient, you
must have extensive knowledge about the information and the types of
analysis in which the user is interested.

You can also perform significant data reduction and formatting before
storing it to disk, so that when the stored data is retrieved for further
analysis, it is easier to handle.

Analysis Categories
LabVIEW offers hundreds of built-in analysis functions that cover different
areas and methods of extracting information from acquired data. You can
use these functions as is, or modify, customize, and extend them to suit a
particular need. These functions are categorized in the following groups:
Measurement, Signal Processing, Mathematics, Image Processing, Control,
Simulation, and Application Areas.

• Measurement

– Amplitude and Level

– Frequency (Spectral) Analysis

– Noise and Distortion

– Pulse and Transition

– Signal and Waveform Generation

– Time Domain Analysis

– Tone Measurements

• Signal Processing

– Digital Filters

– Convolution and Correlation

– Frequency Domain

– Joint Time-Frequency Analysis (Signal Processing Toolset)

– Sampling/Resampling

– Signal Generation

– Super-Resolution Spectral Analysis (Signal Processing Toolset)

– Transforms

– Time Domain

– Wavelet and Filter Bank Design (Signal Processing Toolset)

– Windowing

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-5 LabVIEW Introduction Course Manual

• Mathematics

– Basic Math

– Curve Fitting and Data Modeling

– Differential Equations

– Interpolation and Extrapolation

– Linear Algebra

– Nonlinear Systems

– Optimization

– Root Finding

– Special Functions

– Statistics and Random Processes

• Image Processing

– Blob Analysis and Morphology

– Color Pattern Matching

– Filters

– High-Level Machine Vision Tools

– High-Speed Grayscale Pattern Matching

– Image Analysis

– Image and Pixel Manipulation

– Image Processing

– Optical Character Recognition

– Region-of-Interest Tools

• Control

– PID and Fuzzy Control

• Simulation

– Simulation Interface (Simulation Interface Toolkit)

• Application Areas

– Machine Condition Monitoring (Order Analysis Toolset)

– Machine Vision (IMAQ, Vision Builder)

– Motion Control

– Sound and Vibration (Sound and Vibration Analysis Toolset)

For a complete list of LabVIEW analysis functions refer to ni.com/
analysis.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-7 LabVIEW Introduction Course Manual

Exercise 10-1 Concept: Analysis Types

Goal
Choose when to use inline, offline, programmatic or interactive analysis for
an application.

Description
For each scenario, circle which forms of analysis to use. Most scenarios use
more than one form.

Scenario 1
The failure rate of your manufacturing line is related directly to the speed of
production. Monitor the failure rate programmatically. If the failure rate is
greater than 3 %, decrease the speed of the line. If the failure rate is less than
2 %, increase the speed of the line.

Scenario 2
You are listening to a radio station. The frequency components of the radio
station signal are determined and recorded to file. If you have difficulty
hearing the radio station, you tell the VI to pass the signal through a filter
before recording the data.

Scenario 3
You are recording temperature and pressure data. Once a week, you prepare
a report for your manager correlating the temperature and pressure trends
during thunderstorms.

Scenario 4
You are performing stress analysis on a bridge. During rush hour, you must
also record vibration data on the bridge. It is considered rush hour when
more than 100 cars use the bridge in 5 minutes. A sensor records the number
of cars crossing the bridge.

Refer to the following page for answers to these scenarios.

Inline Offline Programmatic Interactive

Inline Offline Programmatic Interactive

Inline Offline Programmatic Interactive

Inline Offline Programmatic Interactive

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-8 ni.com

Scenario 1
• Inline Analysis

• Programmatic Analysis

Inline analysis occurs to determine the speed of the line and the failure rate.
Programmatic analysis occurs to determine when to change the speed of the
line.

Scenario 2
• Inline Analysis

• Interactive Analysis

The user tells the VI when to apply the filter, which means the analysis is
interactive. However, because the filtering happens immediately when the
user specifies, the analysis is inline.

Scenario 3
• Offline Analysis

The data can be correlated at any point; does not need to occur as the data is
acquired. When it is analyzed, it is most likely be analyzed
programmatically. However, without more information, you cannot
determine whether programmatic or interactive analysis is appropriate.

Scenario 4
• Programmatic Analysis

The VI uses the sensor to determine when rush hour is occurring and
immediately begins recording the additional data. Since no information is
given on how the data is analyzed, cannot determine whether inline or
offline analysis is appropriate.

End of Exercise 10-1

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-9 LabVIEW Introduction Course Manual

B. Reading and Writing Data to File
File I/O records or reads data in a file.
A typical file I/O operation involves the following process.

1. Create or open a file. Indicate where an existing file resides or where you
want to create a new file by specifying a path or responding to a dialog
box to direct LabVIEW to the file location. After the file opens, a
refnum represents the file.

Refer to the References to Objects or Applications section of Chapter 4,
Building the Front Panel, for more information about refnums.

2. Read from or write to the file.

3. Close the file.

File Formats
LabVIEW can use or create the following file formats: Binary, ASCII,
LVM, and TDM.

• Binary— Binary files are the underlying file format of all other file
formats.

• ASCII—An ASCII file is a specific type of binary file that is a standard
used by most programs. It consists of a series of ASCII codes. ASCII
files are also called text files.

• LVM— The LabVIEW measurement data file (.lvm) is a tab-delimited
text file you can open with a spreadsheet application or a text-editing
application. The .lvm file includes information about the data, such as
the date and time the data was generated. This file format is a specific
type of ASCII file created for LabVIEW.

• TDM—This file format is a specific type of binary file created for
National Instruments products. It actually consists of two separate files:
an XML section contains the data attributes, and a binary file for the
waveform.

In this course, you learn about creating text (ASCII) files. Use text files
when you want to access the file from another application, if disk space and
file I/O speed are not crucial, if you do not need to perform random access
read or writes, and if numeric precision is not important.

You used an LVM file in Lesson 2. To learn more about binary and TDM
files, refer to the LabVIEW Help or the LabVIEW Basics II course.

LabVIEW Data Directory
You can use the default LabVIEW Data directory to store the data files
LabVIEW generates, such as .lvm or .txt files. LabVIEW installs the
LabVIEW Data directory in the default file directory for your operating

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-10 ni.com

system to help you organize and locate the data files LabVIEW generates.
By default, the Write LabVIEW Measurement File Express VI stores the
.lvm files it generates in this directory, and the Read LabVIEW
Measurement File Express VI reads from this directory. The Default Data
Directory constant, shown at left, and the Default Data Directory property
also return the LabVIEW Data directory by default.

Select Tools»Options and select Paths from the top pull-down menu to
specify a different default data directory. The default data directory differs
from the default directory, which is the directory you specify for new VIs,
custom controls, VI templates, or other LabVIEW documents you create.

File I/O VIs
File I/O VIs and some File I/O functions, such as the Read from Text File
and Write to Text File functions, can perform all three steps for common file
I/O operations. The VIs and functions designed for multiple operations
might not be as efficient as the functions configured or designed for
individual operations. If you are writing to a file in a loop, use low level file
I/O VIs. If you are writing to a file in a single operation, use the high-level
file I/O VIs if you prefer.

Disk Streaming with Low-Level Functions
 You also can use File I/O functions for disk streaming operations, which
save memory resources by reducing the number of times the function
interacts with the operating system to open and close the file. Disk
streaming is a technique for keeping files open while you perform multiple
write operations, for example, within a loop. Wiring a path control or a
constant to the Write to Text File function, the Write to Binary File function,
or the Write to Spreadsheet File VI adds the overhead of opening and
closing the file each time the function or VI executes. VIs can be more
efficient if you avoid opening and closing the same files frequently.

To avoid opening and closing the same file, you need to pass a refnum to the
file into the loop. When you open a file, device, or network connection,
LabVIEW creates a refnum associated with that file, device, or network
connection. All operations you perform on open files, devices, or network
connections use the refnums to identify each object.

The examples in Figure 10-2 and Figure 10-1 show the advantages of using
disk streaming. In the first example, the VI must open and close the file
during each iteration of the loop. The second example uses disk streaming
to reduce the number of times the VI must interact with the operating system
to open and close the file. By opening the file once before the loop begins
and closing it after the loop completes, you save two file operations on each
iteration of the loop.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-11 LabVIEW Introduction Course Manual

Figure 10-1. Non-Disk Streaming Example

Figure 10-2. Disk Streaming Example

High Level File I/O
High-level File I/O VIs include the following:

• Write to Spreadsheet File—Converts a 2D or 1D array of single-
precision numbers to a text string and writes the string to a new ASCII
file or appends the string to an existing file. You also can transpose the
data. The VI opens or creates the file before writing to it and closes it
afterwards. You can use this VI to create a text file readable by most
spreadsheet applications.

• Read From Spreadsheet File—Reads a specified number of lines
or rows from a numeric text file beginning at a specified character offset
and converts the data to a 2D single-precision array of numbers. The VI
opens the file before reading from it and closes it afterwards. You can
use this VI to read a spreadsheet file saved in text format.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-12 ni.com

• Write to Measurement File—An Express VI that writes data to a text-
based measurement file (.lvm) or a binary measurement file (.tdm)
format. You can specify the save method, file format (.lvm or .tdm),
header type, and delimiter.

• Read from Measurement File—An Express VI that writes data to a
text-based measurement file (.lvm) or a binary measurement file
(.tdm) format. You can specify the file name, file format and segment
size.

Avoid placing the high-level VIs in loops, because the VIs perform open and
close operations each time they run.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-13 LabVIEW Introduction Course Manual

Exercise 10-2 Optional: Read VCard VI

Goal
Read an ASCII file into LabVIEW.

Scenario
The business card contacts for your company are stored in the Windows
Address Book. You must extract specific data from an individual business
card into a LabVIEW text display.

Design

Inputs and Outputs
In this VI, the output appears in a dialog box, and the inputs are from a file.
Therefore, there are no inputs or outputs necessary on the front panel of this
VI.

Flowchart
To understand how to design this program, you must first view the text file
created by the Address Book.

1. Open WordPad from Start»Programs»Accessories»WordPad.

2. Select File»Open.

3. Navigate to the C:\Exercises\LabVIEW Basics I\Read VCard
directory.

4. Change the file type to All Documents.

5. Select one of the business card files in this directory.

This is an example of the text file created.

Start of VCard text file

BEGIN:VCARD¶

VERSION:2.1¶

N:McGillicuttey;Heather;Louise;Ms.¶

FN:Heather Louise McGillicuttey¶

NICKNAME:Lou¶

ORG:National Instruments;Internal Affairs¶

TITLE:President¶

NOTE:I am an imaginary person.¶

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-14 ni.com

TEL;WORK;VOICE:512-555-1212¶

TEL;HOME;VOICE:512-555-1212¶

TEL;CELL;VOICE:512-555-1212¶

TEL;PAGER;VOICE:512-555-1212¶

TEL;WORK;FAX:512-555-1212¶

TEL;HOME;FAX:512-555-1212¶

ADR;WORK:;Corner;11500 N. Mopac Expressway;Austin;Texas;78759;USA¶

LABEL;WORK;ENCODING=QUOTED-PRINTABLE:Corner=0D=0A11500 N. Mopac
Expressway=0D=0AAustin, Texas 78759=0D=0AUSA¶

ADR;HOME:;;111 Easy Street;Austin;Texas;78759;USA¶

LABEL;HOME;ENCODING=QUOTED-PRINTABLE:111 Easy Street=0D=0AAustin, Texas
78759=0D=0AUSA¶

EMAIL;PREF;INTERNET:heather@ni.com¶

REV:20050818T150422Z¶

END:VCARD

End of VCard text file

Notice that the file contains beginning and end tags. You can use the end tag
to determine when to stop reading the file. The file also had a end of line at
the end of each tag. There is also a colon between the tag and the
corresponding data. There is a semicolon separating different parts of a each
data element. All of this information is useful when writing a VI meant to
parse data.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-15 LabVIEW Introduction Course Manual

Figure 10-3. Read VCard VI Flowchart

This program consists of two loops. One loop reads the data from the
business card file, line by line. The second loop chooses which pieces of
data to display, replaces each tag name with a more meaningful name, and
replaces the semicolons with end of line characters. The flowchart elements
in Figure 10-3 with a thicker border represent VIs that have already been
built for you for this exercise.

Open File
Read one line of

data from file

End of File?

No

Close FileYes
Seperate the data
into two strings at

the colon

Add string to
a tag array and
a data array.

Create an array of
clusters (tag and
display name) for
data of interest

Use tag name to
determine index of

data of interest

Get data from
specificed index

Replace
semicolons with
carriage returns

Add new row to an
array of display
names and data

End of data of
interest?

No

Display 2D Array
of data

Yes

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-16 ni.com

Implementation

1. Create a business card entry in the Windows Address Book.

❑ Open the Address Book from Start»Programs»Accessories»
Address Book.

❑ Select File»New Contact.

❑ Fill in some or all of the fields with your information or an imaginary
contact.

❑ Click OK when you have finished.

❑ Select File»Export»Business Card (vCard).

❑ Navigate to the C:\Exercises\LabVIEW Basics I\Read
VCard directory.

❑ Click Save.

❑ Select File»Exit to close the Windows Address Book.

2. Open a blank VI.

3. Save the VI as Read VCard.vi in the C:\Exercises\LabVIEW
Basics I\Read VCard directory.

4. Open the block diagram.

In the following steps, you create a block diagram similar to Figure 10-4. In
this block diagram, you read the vCard you just created as a 2D array of
strings. The first dimension of the array contains the tags; the second
dimension contains the data.

Figure 10-4. Read VCard VI Block Diagram

5. Open the text file.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-17 LabVIEW Introduction Course Manual

❑ Place an Open/Create/Replace File function on the block diagram.
You do not need to wire any of the inputs of this function to use the
default settings.

6. Read the data from the text file.

❑ Place a While Loop from the Structures palette on the block
diagram to the right of the Open/Create/Replace File function.

❑ Place a Read From Text File function inside the While Loop.

❑ Wire the refnum out terminal from the Open/Create/Replace File
function to the file (use dialog) terminal of the Read From Text File
function.

❑ Wire the error out terminal from the Open/Create/Replace File
function to the error in terminal of the Read From Text File
function.

❑ Place a Match Pattern function after the Read Text function.

❑ Wire the text terminal of the Read Text function to the string
terminal of the Match Pattern function.

❑ Right-click the regular expression terminal of the Match Pattern
function and select Create»Constant from the shortcut menu.

❑ Enter a colon (:) into the string constant.

❑ Wire the before substring terminal of the Match Pattern function to
create an output tunnel from the While Loop.

❑ Right-click the output tunnel and select Enable Indexing from the
shortcut menu.

❑ Wire the after substring terminal of the Match Pattern function to
create an output tunnel from the While Loop.

❑ Right-click the output tunnel and select Enable Indexing from the
shortcut menu.

7. Stop the While Loop if an error occurs or when the end of the file has
been reached.

❑ Wire the error out terminal of the Read From Text File function to
create an output tunnel on the While Loop.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-18 ni.com

❑ Right-click the tunnel and select Replace with Shift Register from
the shortcut menu. Your cursor should change into a shift register,
indicating that you should choose the input side of the shift register.

❑

❑ Click the error input tunnel on the right side of the While Loop to
change the input tunnel to a shift register.

❑ Place an Unbundle By Name function inside the While Loop.

❑ Wire the error out from the Read from Text File function to the
Unbundle By Name function.

❑ Place an Or function in the While Loop.

❑ Wire the status element of the error cluster to the x input of the Or
function.

❑ Place an Equal function in the While Loop.

❑ Wire the before substring terminal of the Match Pattern function to
the y terminal of the Equal function.

❑ Right-click the x terminal of the Equal function.

❑ Select Create»Constant.

❑ Enter END into the String Constant.

❑ Wire the output of the Equal function to the y input of the Or
function.

❑ Wire the output of the Or function to the conditional terminal of the
While Loop.

8. Close the text file.

❑ Wire the refnum out terminal of the Read From Text File function
to create an output tunnel on the While Loop.

❑ Right-click the tunnel and select Replace with Shift Register. Your
cursor should change into a shift register, indicating that you should
choose the input side of the shift register.

❑ Click the left refnum input tunnel of the While Loop to replace the
tunnel with a shift register.

❑ Place a Close File function to the right of the While Loop.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-19 LabVIEW Introduction Course Manual

❑ Wire the refnum output tunnel to the refnum input terminal of the
Close File function.

❑ Wire the error output tunnel to the error in terminal of the Close File
function.

9. Display the arrays generated on the output of the While Loop.

❑ Right-click the before the substring indexed output tunnel and select
Create»Indicator from the shortcut menu.

❑ Name the array indicators Tags.

❑ Right-click the bottom array output tunnel and Select
Create»Indicator from the shortcut menu.

❑ Name the array indicators Data.

10. Check for errors.

❑ Place a Simple Error Handler to the right of the Close File function.

❑ Wire the error out terminal from the Close Function to the error in
terminal of the Simple Error Handler.

11. Save the VI.

12. Open the front panel of the VI.

13. Expand the indicators to show multiple elements of the arrays.

14. Run the VI.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-20 ni.com

Figure 10-5 shows an example of the front panel after running this VI.
Notice that it is very similar to opening the text file. The names used for each
category are not very clear. In the rest of this exercise, you modify the VI so
that it parses the data for you, making it more legible to a user.

Figure 10-5. Read VCard VI Front Panel without Data Parsing

In the following steps, you add to the block diagram to parse the data in the
arrays. To simplify this process, two VIs have already been built for you.
One of these VIs creates an array where each array element is a cluster
containing a tag and a replacement name for the tag. The second VI opens a
dialog box that displays the final data in a table.

15. Switch to the block diagram.

16. Delete the tag and data array indicators.

17. Delete the wire connecting the Close File function to the Simple Error
Handler.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-22 ni.com

Fi
gu

re
 1

0-
6.

 R
ea

d
VC

ar
d

VI
 B

lo
ck

 D
ia

gr
am

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-23 LabVIEW Introduction Course Manual

18. Move the Simple Error Handler out of the way. You use this VI later in
this exercise.

19. Access the array of tags and replacement names.

❑ Place the Vcard Tags.vi to the right of the Close File function.
This VI is located in the C:\Exercises\LabVIEW
Basics I\Read VCard directory.

Tip Use the Select a VI category of the Functions palette to locate a VI that is not part
of the Functions palette. After you have placed the VI on the block diagram, you can
double-click the VI to open it and examine its block diagram.

❑ Wire the error out terminal from the Close File function to the
error in terminal of the Vcard Tags VI.

20. Create a 2D array containing the replacement names and the
corresponding data.

❑ Place a For Loop to the right of the Vcard Tags VI.

❑ Wire the Array terminal from the Vcard Tags VI to create an input
tunnel on the For Loop. Notice that indexing has automatically been
enabled.

❑ Place an Unbundle by Name function inside the For Loop.

❑ Wire the indexed input tunnel to the Unbundle by Name function.

❑ Expand the Unbundle by Name function to show two elements.

❑ Place a Search 1D Array function to the right of the Unbundle by
Name function.

❑ Wire the Field Tag element of the Unbundle by Name function to
the element terminal of the Search 1D Array function.

❑ Wire the tag array to the 1D array terminal of the Search 1D Array
function. The tag array is the top indexed output tunnel of the While
Loop. Disable indexing on the For Loop tag away tunnel.

❑ Place an Index Array function to the right of the Search 1D Array
function.

❑ Wire the data array to the array terminal of the Index Array
function. The data array is the bottom indexed output tunnel of the
While Loop. Disable indexing on the For Loop data away tunnel.

❑ Wire the index of element terminal from the Search 1D Array
function to the index terminal of the Index Array function.

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-24 ni.com

❑ Place a Search and Replace String function to the right of the Index
Array function.

❑ Wire the element terminal of the Index Array to the input string
terminal of the Search and Replace String.

❑ Right-click the search string terminal of the Search and Replace
String function and select Create»Constant.

❑ Enter a semi-colon (;) in the string constant.

❑ Place an End of Line constant below the string constant.

❑ Wire the End of Line Constant to the replace string terminal of the
Search and Replace String function.

❑ Right-click the replace all?(F) terminal of the Search and Replace
String function and select Create»Constant from the shortcut
menu.

❑ Use the Operating tool to change the False Boolean to a True
Boolean.

❑ Place a Trim Whitespace VI to the right of the Search and Replace
String function.

❑ Wire the result string terminal for the Search and Replace String
function to the input of the Trim Whitespace VI.

❑ Place a Build String Array function to the right of the Trim
Whitespace VI.

❑ Resize the Build Array to have two nodes.

❑ Wire the Field Name element of the Unbundle by Name function to
the top node of the Build Array function.

❑ Wire the trimmed string output of the Trim Whitespace VI to the
bottom node of the Build Array function. You now have a two
dimensional array with meaningful descriptions in the first
dimensional and corresponding data in the second dimension.

21. Display the generated array.

❑ Wire the output of the Build Array function to create an output
tunnel on the For Loop.

❑ Confirm that the output tunnel is auto-indexed.

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-25 LabVIEW Introduction Course Manual

❑ Place the Table Dialog VI, located in the C:\Exercises\
LabVIEW Basics I\Read VCard directory, to the right of the For
Loop.

❑ Wire the indexed output tunnel to the Contact Information terminal
of the Table Dialog VI.

❑ Wire the error cluster from the Vcard Tags VI to the Table Dialog VI.

❑ Replace the error cluster tunnels with shift registers.

❑ Move the Simple Error Handler VI to the right of the Table Dialog
VI.

❑ Wire the error out terminal of the Table Dialog VI to the error in
terminal of the Simple Error Handler VI.

22. Switch to the front panel.

23. Save the VI.

Testing
1. Run the VI.

2. When prompted, navigate to the business card file you created earlier in
this exercise.

3. Close the Table Dialog window to stop the VI.

4. Close the VI when you have finished.

End of Exercise 10-2

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-27 LabVIEW Introduction Course Manual

Self-Review: Quiz

1. You are writing a testing application to test the audio characteristics of
microphones as they are manufactured. For each microphone you test,
you must acquire 1 second of sound data and compare the data to an
ideal signal. You then need to log the acquired data and a pass/fail status
to a file. What type of analysis should you use?

a. Inline programmatic analysis

b. Offline programmatic analysis

c. Interactive analysis

2. For the situation described in the previous question, your continuously
running test program logs to a single file the results of all tests that occur
in one hour. If you are concerned about the execution speed of your
program, should you use low-level or high-level File I/O VIs?

a. Low-level file I/O VIs

b. High-level file I/O VIs

3. If you want to view data in a text editor such as Notepad, what file
format should you use to save the data?

a. ASCII

b. TDM

Lesson 10 Analyzing and Storing Measurement Data

© National Instruments Corporation 10-29 LabVIEW Introduction Course Manual

Self-Review: Quiz Answers

1. You are writing a testing application to test the audio characteristics of
microphones as they are manufactured. For each microphone you test,
you must acquire 1 second of sound data and compare the data to an
ideal signal. You then need to log the acquired data and a pass/fail status
to a file. What type of analysis should you use?

a. Inline programmatic analysis

b. Offline programmatic analysis

c. Interactive analysis

2. For the situation described in the previous question, your continuously
running test program logs to a single file the results of all tests that occur
in one hour. If you are concerned about the execution speed of your
program, should you use low-level or high-level File I/O VIs?

a. Low-level file I/O VIs

b. High-level file I/O VIs

3. If you want to view data in a text editor such as Notepad, what file
format should you use to save the data?

a. ASCII

b. TDM

Lesson 10 Analyzing and Storing Measurement Data

LabVIEW Introduction Course Manual 10-30 ni.com

Notes

© National Instruments Corporation 11-1 LabVIEW Introduction Course Manual

11
Common Design Techniques and
Patterns

The first step in developing a LabVIEW project is to explore the
architectures that exist within LabVIEW. Architectures are essential for
creating a successful software design. The most common architectures are
usually grouped into design patterns.

As a design pattern gains acceptance, it becomes easier to recognize when
a design pattern has been used. This recognition helps you and other
developers read and make changes to VIs that are based on design patterns.

There are many design patterns for LabVIEW. Most applications use at least
one design pattern. In this course, you explore the State Machine design
pattern. Learn more about design patterns in LabVIEW Basics II.

Topics

A. Sequential Programming

B. State Programming

C. State Machines

D. Parallelism

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-2 ni.com

A. Sequential Programming
In Lesson 1, Problem Solving, you designed a flow chart for a Temperature
Weather Station. The Temperature Weather Station is a set of steps:

1. Read the temperature

2. Test the temperature for limits and display warnings

3. Graph and log the temperature

After you reach the end of the sequence of events, you check to see if the
stop button has been pressed, and, if not, the sequence repeats.

Many of the VIs you write in LabVIEW accomplish sequential tasks. How
you program these sequential task can be very different. Consider the block
diagram in Figure. In this block diagram, a voltage signal is acquired, then
a dialog is presented to the user asking them to turn on the power, then the
voltage signal is acquired again, and the user is asked to turn off the power.
However, in this example, there is nothing in the block diagram to force the
execution order of these events. Any one of these events could happen first.

Figure 11-1. Tasks Not Sequenced

In LabVIEW, you can complete sequential tasks by placing each task in a
separate subVI, and wiring the subVIs in order using the error cluster.
However, in this example, only two of the tasks have a error cluster. Using
the error clusters, you can force the execution order of the two DAQ
Assistants, but not the dialog boxes, as shown in Figure 11-2.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-3 LabVIEW Introduction Course Manual

Figure 11-2. Partially Sequenced Tasks

Use a Sequence structure to force the order of operations of a block diagram
object. A Sequence structure is simply a structure with frames, where each
frame executes in order; the second frame cannot begin execution until
everything in the first frame has completed execution. Figure 11-3 shows an
example of this VI using a Sequence structure to force execution order.

Figure 11-3. Tasks Sequenced with a Sequence Structure

To take advantage of the inherent parallelism in LabVIEW, avoid overusing
Sequence structures. Sequence structures guarantee the order of execution
and prohibit parallel operations. Another negative to using Sequence
structures is that you cannot stop the execution part way through the
sequence. A good way to use Sequence structures for this example is shown
in Figure 11-4.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-4 ni.com

Figure 11-4. Tasks that have been sequenced using Sequence Structures and an
error cluster

The best way to write this VI is to enclose the dialog boxes in a case
structure, wiring the error cluster to the case selector.

Figure 11-5. Tasks that have been sequenced using an error cluster and Case
structures

B. State Programming
 Although a Sequence structure and sequentially wired subVIs both
accomplish the task, sometimes more is necessary:

❑ What if you must change the order of the sequence?

❑ What if you must repeat one item in the sequence more often than the
other items?

❑ What if some items in the sequence execute only when certain
conditions are met?

❑ What if you must stop the program immediately, rather than waiting
until the end of the sequence?

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-5 LabVIEW Introduction Course Manual

Although your program may not have any of the above requirements, there
is always the possibility that the program must be modified in the future. For
this reason, a state programming architecture is a good choice, even if a
sequential programming structure would be sufficient.

C. State Machines
The state machine design pattern is a common and very useful design
pattern for LabVIEW. You can use the state machine design pattern to
implement any algorithm that can be explicitly described by a state diagram
or flow chart. A state machine usually implements a moderately complex
decision-making algorithm, such as a diagnostic routine or a process
monitor.

A state machine, which is more precisely defined as a finite state machine,
consists of a set of states and a transition function that maps to the next state.
Finite state machines have many variations. The two most common finite
state machines are the Mealy machine and the Moore machine. A Mealy
machine performs an action for each transition. A Moore machine performs
a specific action for each state in the state transition diagram. The state
machine design pattern template in LabVIEW implements any algorithm
described by a Moore machine.

Use state machines in applications where distinguishable states exist. Each
state can lead to one or multiple states or end the process flow. A state
machine relies on user input or in-state calculation to determine which state
to go to next. Many applications require an initialization state, followed by
a default state, where many different actions can be performed. The actions
performed can depend on previous and current inputs and states. A
shutdown state commonly performs clean up actions.

State machines are commonly used to create user interfaces. In a user
interface, different user actions send the user interface into different
processing segments. Each processing segment acts as a state in the state
machine. Each segments can lead to another segment for further processing
or wait for another user action. In this example, the state machine constantly
monitors the user for the next action to take.

Process testing is another common application of the state machine design
pattern. For a process test, a state represents each segment of the process.
Depending on the result of each state’s test, a different state might be called.
This can happen continually, resulting in an in-depth analysis of the process
you are testing.

The advantage of using a state machine is that once you have created a state
transition diagram, you can build LabVIEW VIs easily.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-6 ni.com

State Machine Infrastructure
Translating the state transition diagram into a LabVIEW block diagram
requires the following infrastructure components:

• While Loop—Continually executes the various states

• Case Structure—Contains a case for each state and the code to execute
for each state

• Shift Register—Contains state transition information

• State Functionality Code—Implements the function of the state

• Transition Code—Determines the next state in the sequence

Figure 11-5 shows the basic structure of a state machine implemented in
LabVIEW for a temperature data acquisition system.

Figure 11-6. Basic Infrastructure of a LabVIEW State Machine

The flow of the state transition diagram is implemented by the While Loop.
The individual states are represented by cases in the Case structure. A shift
register on the While Loop keeps track of the current state and
communicates the current state to the Case structure input.

Controlling the State Machine
There are many ways to control what case a Case structure executes in a
state machine. Choose the method that best suits the function and
complexity of your state machine. Of the methods to implement transitions
in state machines, the most common and easy to use is the single Case
structure transition code. This method provides for the most scalable,
readable, and maintainable state machine architecture. The other methods
can be useful in specific situations, and it is important for you to be familiar
with them.

1 While Loop 2 Shift Register 3 Case Structure

1

2

3

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-7 LabVIEW Introduction Course Manual

Enumerated Type Control
The best method for controlling the initialization and transition of state
machines is the enumerated type control. Enumerated type controls are
widely used as case selectors in state machines. However, if the user
attempts to add or delete a state from the enumerated type control, the
remaining wires that are connected to the copies of this enumerated type
control breaks. This is one of the most common obstacles when
implementing state machines with enumerated type controls. One solution
to this problem is to create a new control with the enumerated type control,
then right-click the enumerated type control and select typedef from the
shortcut menu. Creating a type defined enumerated type control causes all
the enumerated type control copies to automatically update if you add or
remove a state.

Default Transition
Use enumerated type controls to control the initialization and transition of
state machines. There are several common design patterns used to develop
the transition code. Figure 11-7 shows a design pattern that uses a default
transition implemented for a temperature data acquisition system. For the
default transition, no code is needed to determine the next state.

Figure 11-7. Single Default Transition

Transition between Two States
The following method involves making a decision on a transition between
two states. There are several patterns commonly used to accomplish this.
Figure 11-8 shows the Select function transition implemented for a
temperature data acquisition system.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-8 ni.com

Figure 11-8. Transition between Two States

This method works well if you know that the individual state always
transitions between two states. However, this method limits the scalability
of the application. If you need to modify the state to transition among more
than two states, this solution would not work and would require a major
modification of the transition code.

Transition among Two or More States
Create a more scalable architecture by using one of the following methods
to transition among states.

• Case Structure—Use a Case structure instead of the Select function for
the transition code.

Figure 11-9 shows the Case structure transition implemented for a
temperature data acquisition system.

Figure 11-9. Case Structure Transition Code

One advantage to using a Case structure is that the code is self-
documenting. Because each case in the Case structure corresponds to an
item in the enumerated type control, it is easy to read and understand the
code. A Case structure also is scalable. As the application grows, you
can add more transitions to a particular state by adding more cases to the
Case structure for that state. A disadvantage to using a Case structure is
that not all the code is visible at once. Because of the nature of the Case

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-9 LabVIEW Introduction Course Manual

structure, it is not possible to see at a glance the complete functionality
of the transition code.

• Transition Array—If you need more of the code to be visible than a
Case structure allows, you can create a transition array for all the
transitions that can take place in the transition code for a state and index
the Boolean array for the next state.

Figure 11-10 shows the transition array implemented for a temperature
data acquisition system.

Figure 11-10. Transition Array Transition Code

In this example, the array of enumerated type controls are indexed by the
first True Boolean constant in the Boolean array that corresponds to the
index of the new state in the array of enumerated type controls. This
design pattern makes the transition code scalable and easy to read. One
disadvantage of this pattern is that you must use caution when
developing the transition code. You must ensure that there is a one-to-
one correspondence of the items in the Boolean array with the items in
the transition array. Also, the Search 1D Array function returns a –1 if
the item is not found. For the Index Array function to perform with the
expected behavior, you must increment the output of the Search 1D
Array function by 1. In Figure 11-10, if an item is not found, the state
machine remains in the Analyzer state.

• State Diagram Toolkit—Another pattern that implements the
transition code is also used by the NI LabVIEW State Diagram Toolkit.
This pattern uses a large Case structure for every state and a smaller
While Loop that iterates through the state transitions until the proper
state transition is met. Figure 11-11 shows the LabVIEW State Diagram
Toolkit implementation for a temperature data acquisition system.

The LabVIEW State Diagram Toolkit adds the State Diagram Editor
function to LabVIEW to visually draw the logic that defines an
application. As this visual representation of the logic is created, the State
Diagram Editor generates the LabVIEW code that acts as the foundation
of your application.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-10 ni.com

Note The LabVIEW State Diagram Toolkit is not included in the LabVIEW
Professional Development System, it is available for purchase separately.

Figure 11-11. State Diagram Toolkit State Machine

The large Case structure selects the appropriate code to execute for the
current active state. Notice that the shift register is initialized with a
value from the enumerated type control to reflect the initial state
specified in the state transition diagram. The large Case structure
contains one subdiagram for every state that specifies which set of
instructions to execute when each state becomes active. The code for
evaluating transition conditions is contained within a While Loop inside
the code diagram for that state. This While Loop contains another
enumerated data type (unique to the state) that contains one entry for
each transition that leaves the state. The entries are ordered by transition
priority. Higher priority transitions have lower values in the
enumeration. When the small While Loop executes, the values are fed
one by one, in order from smallest value to largest, into a smaller
transition Case structure. The (integer) values from the loop index
terminal are converted into the transition data type. The transition Case
structure outputs two values—the value of the transition condition for
the transition being tested and the value of the new active state,
assuming the condition for this transition evaluates to TRUE. As soon
as a TRUE transition occurs, the While Loop stops, and the state
machine moves on to the next active state.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-11 LabVIEW Introduction Course Manual

The following conditions must exist in the State Diagram Toolkit state
machine:

• There must always be a default transition.

• The default transition must always have lowest priority so it is
evaluated last.

• The default transition condition must always be TRUE. You can
wire a Boolean constant to the condition output for the default
transition.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-12 ni.com

Exercise 11-1 Project: Temperature Weather Station

Goal
Create a state machine and practice the skills learned throughout this course.

Scenario
Complete the course project using a state machine and the state flow chart
developed earlier in the course.

The project acquires a temperature every half a second, analyzes each
temperature to determine if the temperature is too high or too low, then
alerts the user if there is a danger of heatstroke or freeze. The program logs
the data if a warning has occurred. If the user has not pressed the stop button,
the entire process repeats.

Design
You have already completed the design stage for this project. The inputs and
outputs and flowchart are repeated here.

User Interface Inputs and Outputs

External Inputs and Outputs
• Inputs: Current temperature retrieved from a sensor attached to AI0 of

the data acquisition board.
Conversion formula: Voltage x 100 = Celsius

• Outputs: tab-delimited ASCII file containing current temperature,
temperature limits, and warning string for each warning that occurs.

Type Name Properties

Numeric
Control

Upper Limit Double Precision

Numeric
Control

Lower Limit Double Precision

Waveform
Chart

Temperature
History

String Indicator Warning Four possible values:
Heatstroke Warning, Freeze
Warning, No Warning and
Upper Limit < Lower Limit

Stop Button Stop

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-13 LabVIEW Introduction Course Manual

State Transition Diagram

Figure 11-12. State Transition Diagram for the Course Project

Initialize

Analysis

Acquisition

Datalog

Time Check

Warning=TRUE

Warning=FALSE

Time Elapsed=TRUE
and

Stop=False

Stop=TRUE

Time Elapsed=FALSE
and

Stop=FALSE

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-14 ni.com

Implementation
In the following steps, you set up the state machine in the Weather Station
UI VI.

Figure 11-13. Setting up the State Machine

1. Open the weather station project.

❑ Select File»Open Project. Navigate to the C:\Exercises\
LabVIEW Basics I\Course Project directory.

❑ Select Weather Station.proj.

2. Open the user interface for the weather station project.

❑ In the Project Explorer window, double-click the Weather Station
UI.vi.

3. Switch to the block diagram.

4. Create a state machine on the block diagram using the existing
enumerate type control.

❑ Place a While Loop from the Structures palette on the block
diagram, as shown in Figure 11-13.

❑ Place a Case structure inside the While Loop.

❑ Place the Weather Station State enumerated type constant outside
the While Loop.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-15 LabVIEW Introduction Course Manual

❑ Connect the Weather Station State enumerated type constant to the
case selector terminal.

❑ Right-click the Case structure and select Add Case for Every Value
from the shortcut menu.

❑ Change the enumerated type constant tunnel to a shift register.

5. Place a Wait function in the loop so that the processor can handle other
tasks when needed.

❑ Place a Wait (ms) function inside the While Loop, outside the Case
structure.

❑ Right-click the milliseconds to wait terminal and select
Create»Constant from the shortcut menu.

❑ Set the constant to a value of 5.

6. Pass the temperature cluster into the state machine so that it can be
accessed from any state.

❑ Wire the output of the Bundle function to the While Loop to create
a tunnel.

❑ Change the cluster tunnel to a shift register.

❑ Wire the shift register to the Case structure.

7. Confirm that your block diagram is similar to the one shown in
Figure 11-13.

8. Save the VI.

In the following sections, complete each state of the state machine.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-16 ni.com

Acquisition State

Figure 11-14. Acquisition State

1. Switch to the Acquisition state of the state machine.

2. Acquire a single temperature reading.

Hardware

❑ Place the DAQ Assistant in the Acquisition state.

❑ Select Analog Input»Voltage for the task type.

❑ Select ai0 on your DAQ device for the channel.

❑ Click the Finish button.

❑ Select Temperature from the Custom Scaling pull-down menu.

❑ Set the signal input range to 0 to 50 degrees Celsius.

❑ Set the Task Timing to 1 Sample (On Demand).

❑ Click the OK button.

❑ Skip to step 3.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-17 LabVIEW Introduction Course Manual

No Hardware

❑ Select the Temperature Simulator VI in the Project Explorer
window and drag it into the Acquisition state. In future steps, you
wire the inputs and outputs of the Temperature Simulator VI instead
of the DAQ Assistant.

3. Display the acquired temperature on the Temperature History Waveform
Chart.

❑ Move the Temperature History terminal inside the Acquisition state.

❑ Wire the data output of the DAQ Assistant to the Temperature
History terminal. Notice that the waveform graph data type
automatically changes to match the incoming data.

4. Update the temperature cluster with the current temperature, upper limit,
and lower limit.

❑ Place an Unbundle by Name function inside the Acquisition state.

❑ Wire the temperature cluster to the Unbundle by Name function.

❑ Expand the Unbundle by Name function to show three elements.

❑ If necessary, change the contents to show the following elements in
this order: Temperature, T Upper Limit, T Lower Limit.

❑ Move the Upper Limit and Lower Limit terminals into the
Acquisition state.

❑ Wire the data output of the DAQ Assistant to the Temperature
element of the Unbundle by Name function.

❑ Wire the Upper Limit terminal to the T Upper Limit element of the
Unbundle by Name function.

❑ Wire the Lower Limit terminal to the T Lower Limit element of the
Unbundle by Name function.

5. Set the state machine to go to the Analysis state next.

❑ Place a copy of the Weather Station State enumerated type constant
inside the Acquisition state.

❑ Select the Analysis element of the enumerated type constant.

❑ Wire the enumerated type constant to the output state shift register.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-18 ni.com

6. Save the VI.

Analysis State
In previous exercises, you wrote a subVI that performs the analysis required
for this state machine: Determine Warnings VI. This VI is already added to
the project file, but needs to be placed in the main VI.

Figure 11-15. Analysis State

1. Switch to the Analysis state of the state machine.

2. Place the Determine Warnings VI in the Project Explorer and place in
the Analysis state.

❑ Switch to the Project Explorer window.

❑ Select the Determine Warnings VI and drag it into the Analysis
state.

3. Pass the temperature values to the Determine Warnings VI.

❑ Place an Unbundle by Name function inside the Analysis state.

❑ Wire the temperature cluster to the Unbundle by Name function.

❑ Expand the Unbundle by Name function to show three elements.

❑ If necessary, change the contents to show the following elements in
this order: Temperature, T Upper Limit, T Lower Limit.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-19 LabVIEW Introduction Course Manual

❑ Wire each of the Unbundle by Name elements to the appropriate
terminal of the Determine Warnings VI.

4. Display the output of the Determine Warnings VI.

❑ Move the Warning terminal inside the Analysis state.

❑ Wire the Warning Text terminal of the Determine Warnings VI to
the Warning terminal.

5. Update the warning value in the temperature cluster.

❑ Place a Bundle by Name function inside the Analysis state.

❑ Wire the temperature cluster to the input cluster terminal of the
Bundle by Name function.

❑ Choose the Warning element in the Bundle by Name function.

❑ Wire the Warning Text terminal of the Determine Warnings VI to
the Warning terminal.

❑ Wire the output of the Bundle by Name function to the output
temperature cluster shift register.

6. If a warning has occurred, log the data; otherwise check to see if it is
time to acquire the next piece of data.

❑ Place a Case structure inside the Analysis state.

❑ Wire the Warning? terminal of the Determine Warnings VI to the
case selector of the new Case structure.

❑ Switch to the True case of the Case structure.

❑ Place a copy of the Weather Station State enumerated type constant
inside the True case.

❑ Select the Data Log element of the enumerated type control.

❑ Wire the enumerated type control to the output state shift register.

❑ Switch to the False case of the Case structure.

❑ Place a copy of the Weather Station State enumerated type control
inside the True case.

❑ Select the Time Check element of the enumerated type control.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-20 ni.com

❑ Wire the enumerated type constant to the tunnel of the Case
structure.

7. Save the VI.

Data Log State
In this state, the data is logged in a tab-delimited ASCII file. You must open
the file before the state machine executes, and close the file after the state
machine executes.

Figure 11-16. Data Log State

1. Switch to the Data Log state of the state machine.

2. Place the Open/Create/Replace File function to the left of the state
machine.

3. Set the Open/Create/Replace File function to open or create.

❑ Right-click the operation terminal of the Open/Create/Replace File
function and select Create»Constant from the shortcut menu.

❑ Select the open or create element of the constant.

4. Pass the error cluster and file refnum into the state machine so that it can
be used by all states.

❑ Wire the error out terminal of the Open/Create/Replace File
function to the While Loop.

❑ Replace the tunnel with a shift register.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-21 LabVIEW Introduction Course Manual

❑ Wire the refnum out terminal of the Open/Create/Replace File
function to the While Loop.

❑ Replace the tunnel with a shift register.

5. Prepare the temperature data for writing by combining it all in one
string.

❑ Place an Unbundle by Name function inside the Data Log state.

❑ Wire the temperature cluster to the input of the Unbundle by Name
function.

❑ Resize the function to show four elements.

❑ Select the elements so they are in the following order: Temperature,
T Upper Limit, T Lower Limit, and Warning.

❑ Place a Format Into String function to the right of the Unbundle by
Name function.

❑ Resize the function to have eight inputs.

❑ Place a tab constant in the Data Log state.

❑ Place an End of Line constant in the Data Log state.

❑ Wire the inputs in the following order: temperature, <tab>, T Upper
Limit, <tab>, T Lower Limit, <tab>, Warning, <end of line>.

6. Write the temperature string to the file.

❑ Place the Write To Text File function in the Data Log state.

❑ Wire the output of the Format Into String function to the text input
of the Write To Text File function.

❑ Wire the error clusters to and from the Write To Text File function.

❑ Wire the file refnum to and from the Write To Text File function.

7. Close the file.

❑ Place the Close File function to the right of the state machine.

❑ Wire the error cluster and the file refnum to the Close File function.

❑ Place a Simple Error Handler to the right of the Close File function.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-22 ni.com

❑ Wire the error out terminal from the Close File function to the
Simple Error Handler.

8. Place a copy of the Weather Station State enumerated type control inside
the Data Log state.

9. Select the Time Check element of the constant.

10. Wire the constant to the tunnel of the Case structure.

11. Save the VI.

Time Check State
In this state, determine whether half a second has passed. If it has, acquire
the next piece of data.

Figure 11-17. Time Check State

1. Switch to the Time Check state of the state machine.

2. Move the Stop terminal inside the Time Check state.

3. Determine when half a second has passed since the last data acquisition.

❑ Place the Elapsed Time Express VI on the block diagram inside the
While Loop, but outside the Case structure.

❑ Configure the Elapsed Time to 0.5 seconds

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-23 LabVIEW Introduction Course Manual

❑ Remove the checkmark from the Automatically reset after time
target checkbox.

❑ Click the OK button.

4. Navigate to the Acquisition state if the time has elapsed.

❑ Place a Case structure inside the Time Check state.

❑ Wire the Time has Elapsed terminal from the Elapsed Time
Express VI to the case selector.

❑ Switch to the True case.

❑ Place a copy of the Weather Station State constant inside the True
case.

❑ Select the Acquisition element of the constant .

❑ Wire the constant to the state tunnel of the Case structure.

5. Navigate to the Time Check state if the time has not elapsed.

❑ Switch to the False case.

❑ Place a copy of the Weather Station State constant inside the False
case.

❑ Select the Time Check element of the constant.

❑ Wire the constant to the state tunnel of the Case structure.

6. Save the VI.

Finish the State Machine

1. Wire the temperature data cluster, the error cluster and the file refnum
through all states.

2. Determine when to stop the state machine. Stop when an error occurs or
the user has clicked the stop button, but only after a full sequence has
occurred (Acquisition, Analysis, Data Log).

❑ Place an Unbundle by Name function inside the While Loop to the
right of the Case structure.

❑ Wire the error cluster to the Unbundle by Name function.

❑ Place the Or function next to the loop condition terminal.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-24 ni.com

❑ Wire the status element of the error cluster to the top input of the Or
function.

❑ From the Time Check state, wire the Stop button to the bottom input
of the Or function.

❑ Wire the output of the Or function to the loop condition terminal.

❑ Switch to the Acquisition state.

❑ Right-click the tunnel attached to the bottom input of the Or function
and select Create»Constant from the shortcut menu to wire a False
constant to the Boolean tunnel.

❑ Switch to the Analysis state.

❑ Right-click the tunnel attached to the bottom input of the Or function
and select Create»Constant from the shortcut menu to wire a False
constant to the Boolean tunnel.

❑ Switch to the Data Log State.

❑ Right-click the tunnel attached to the bottom input of the Or function
and select Create»Constant from the shortcut menu to wire a False
constant to the Boolean tunnel.

3. Set the Elapsed Time Express VI to start counting when the VI begins.

❑ Place a True constant outside the While Loop, to the left of the
Elapsed Time Express VI.

❑ Wire the constant to the Reset terminal of the Elapsed Time Express
VI.

❑ Replace the Reset tunnel with a shift register.

4. Document the block diagram.

5. Figures 11-18 through 11-21 show an example of the final block
diagram for each state. Complete any block diagram wiring that is still
necessary. Pay particular attention to the Booleans in the lower right of
each case. These Booleans determine when the state machine stops, and
when the Elapsed Time Express VI count is reset.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-25 LabVIEW Introduction Course Manual

Figure 11-18. Complete Acquisition State

Figure 11-19. Complete Analysis State

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-26 ni.com

Figure 11-20. Complete Data Log State

Figure 11-21. Complete Time Check State

6. Switch to the front panel.

7. Save the VI.

8. Save the project.

Testing

1. Run the VI.

2. Enter 30 in the Upper Limit.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-27 LabVIEW Introduction Course Manual

3. Enter 20 to the Lower Limit.

4. When prompted, provide a name and a location for the file.

5. Modify the Lower Limit until it is higher than the current temperature
reading.

6. The Freeze Warning should appear.

7. Set the Lower Limit back to 20.

8. Modify the Upper Limit until it is lower than the current temperature
reading.

9. The Heatstroke Warning should appear.

10. Set the Upper Limit to 15.

11. The Upper Limit < Lower Limit Warning should appear.

12. Stop the VI.

13. Open Microsoft Excel.

14. Select File»Open.

15. Navigate to the file created by the VI.

16. Select Open.

17. Examine the file created by the VI.

18. Close the file when you are finished.

19. Close the VI.

End of Exercise 11-1

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-28 ni.com

D. Parallelism
Often, you need to program multiple tasks so that they execute at the same
time. In LabVIEW tasks can run in parallel if they do not have a data
dependency between them, and if they are not using the same shared
resource. An example of a shared resource is a file, or an instrument.

You learn about LabVIEW design patterns for executing multiple tasks at
the same time in the LabVIEW Basics II course. These design patterns
include parallel loops, master/slave and producer/consumer.

Lesson 11 Common Design Techniques and Patterns

© National Instruments Corporation 11-29 LabVIEW Introduction Course Manual

Summary
The benefits of using a state machine instead of a sequential programming
structure include:

• You can change the order of the sequence.

• You can repeat individual items in the sequence.

• You can set condition to determine when an item in the sequence should
execute.

• You can stop the program at any point in the sequence.

Lesson 11 Common Design Techniques and Patterns

LabVIEW Introduction Course Manual 11-30 ni.com

Notes

© National Instruments Corporation A-1 LabVIEW Introduction Course Manual

A
Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW resources.

National Instruments Technical Support Options
Visit the following sections of the National Instruments Web site at ni.com
for technical support and professional services.

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For answers and solutions, visit the
award-winning National Instruments Web site for software drivers
and updates, a searchable KnowledgeBase, product manuals,
step-by-step troubleshooting wizards, thousands of example
programs, tutorials, application notes, instrument drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

For information about other technical support options in your area,
visit ni.com/services or contact your local office at
ni.com/contact.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program ensures
qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit the
Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

Appendix A Additional Information and Resources

LabVIEW Introduction Course Manual A-2 ni.com

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visit ni.com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification
Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. areas. Visit ni.com/training for more information about the
NI certification program.

LabVIEW Resources
This section describes how you can receive more information regarding
LabVIEW.

LabVIEW Publications
The following publications offer more information about LabVIEW.

LabVIEW Technical Resource (LTR) Newsletter
Subscribe to LabVIEW Technical Resource to discover tips and techniques
for developing LabVIEW applications. This quarterly publication offers
detailed technical information for novice users and advanced users. In
addition, every issue contains a disk of LabVIEW VIs and utilities that
implement methods covered in that issue. To order the LabVIEW Technical
Resource, contact LTR publishing at (214) 706-0587 or visit
www.ltrpub.com.

LabVIEW Books
Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all
the LabVIEW books and links to places to purchase these books.

info-labview Listserve
info-labview is an email group of users from around the world who
discuss LabVIEW issues. The list members can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

Appendix A Additional Information and Resources

© National Instruments Corporation A-3 LabVIEW Introduction Course Manual

To subscribe to info-labview, send email to:

info-labview-on@labview.nhmfl.gov

To subscribe to the digest version of info-labview, send email to:

info-labview-digest@labview.nhmfl.gov

To unsubscribe to info-labview, send email to:

info-labview-off@labview.nhmfl.gov

To post a message to subscribers, send email to:

info-labview@labview.nhmfl.gov

To send other administrative messages to the info-labview list manager,
send email to:

info-labview-owner@nhmfl.gov

You might also want to search previous email messages at:

www.searchVIEW.net

• The info-labview web page is available at
www.info-labview.org

© National Instruments Corporation I-1 LabVIEW Introduction Course Manual

Index

A
arrays

2D, 4-3
auto-indexing, 4-4
creating 2D arrays using auto-indexing,

4-7
creating constants, 4-4
creating controls and indicators, 4-3
dimensions, 4-2
examples of 1D arrays, 4-2
examples of 2D arrays, 4-3
restrictions, 4-2

auto-indexing
creating 2D arrays, 4-7
using to set For Loop count, 4-5

automatic wires, 2-22
automatic wiring, 2-22

B
block diagram

automatic wiring, 2-22
creating cluster constants, 4-16
data flow, 2-39
nodes, 2-19
toolbar, 2-23
wiring automatically, 2-22
wiring to charts, 3-56

Boolean controls and indicators, 2-13
Breakpoint tool

conditional breakpoints with probes, 5-8
debugging VIs, 5-8

broken VIs
common causes, 5-3
correcting, 2-45, 5-2
displaying errors, 5-2

Bundle By Name function, 4-18
Bundle function, 4-18

C
callers

chain of, 5-10
displaying, 5-10

Case structures
Boolean cases, 3-68
enum cases, 3-70
error cases, 5-14
executing, 3-66
integer cases, 3-69
selecting cases, 3-67
specifying a default case, 3-66
string cases, 3-69

certification (NI resources), A-2
chain of callers

displaying, 5-10
charts

update mode, 3-55
wiring, 3-56

clusters
assembling from individual elements,

4-18
constants, 4-15
creating, 4-15
creating constants, 4-16
disassembling, 4-19
error, 5-12
order, 4-16
order of elements, 4-16
replacing or accessing elements, 4-18
wire patterns, 4-15

coercion
numeric data, 3-42

communicating with instruments, 9-29
serial, 9-3
VISA, 9-23

conditional breakpoints
See probes

conditional terminals, 3-32
configuration

Index

LabVIEW Introduction Course Manual I-2 ni.com

software (Windows), 9-7
connector pane

assigning terminals to controls and
indicators, 6-8

configuring, 6-6
modifying layout, 6-7

connector panes, 6-4
setting inputs and outputs, 6-9

constants
arrays, 4-4
clusters, 4-15, 4-16

Context Help window, 2-57
terminal appearance, 6-9

Control Editor window, 4-29
control flow programming model, 2-39
controls

assigning to connector pane, 6-8
string display types, 3-19
type definitions, 4-31

controls and indicators
Boolean, 2-13
creating arrays, 4-3
creating clusters, 4-15
numeric, 2-13
showing terminals, 2-22

conversion
numeric, 3-42

correcting
broken VIs, 2-45, 5-2

count terminals, 3-41
creating

clusters, 4-15

D
data coercion

numeric, 3-42
data flow

See dataflow
dataflow

observing, 5-5
dataflow programming model, 2-39
debugging

automatic error handling, 5-12

broken VIs, 2-45, 5-2
error handling, 5-12
probes, 5-7
single-stepping, 5-6
suspending execution, 5-9
using execution highlighting, 5-5
using probes, 5-6
using the Breakpoint tool, 5-8

default cases, 3-66
default probes, 5-7
device range

ADC precision, 7-13
description, 7-13

diagnostic tools (NI resources), A-1
dimensions

arrays, 4-2
directory paths

See probes
displaying

chain of callers, 5-10
errors, 5-2

documentation
LabVIEW Help, 2-58
NI resources, A-1

drivers (NI resources), A-1

E
editing

icons, 6-5
Embedded Project Manager, 2-8
enhanced probes

See probes
error handling

using Case structures, 5-14
errors

automatically handling, 5-12
broken VIs, 2-45, 5-2
clusters, 5-12
codes, 5-12
displaying, 5-2
finding, 5-2
handling, 5-12

Index

© National Instruments Corporation I-3 LabVIEW Introduction Course Manual

handling automatically, 5-12
handling using While Loops, 5-14
I/O, 5-13
list, 5-2
methods to handle, 5-12
window, 5-2

examples (NI resources), A-1
execution

debugging VIs, 5-5
flow, 2-39
highlighting, 5-5
suspending to debug VIs, 5-9

Execution Highlighting button, 2-23

F
file I/O

basic operation, 10-9
overview, 10-11
refnums, 10-9

finding
errors, 5-2

fixing
VIs, 2-45, 5-2

flow of execution, 2-39
For Loops

auto-indexing arrays, 4-4
count terminals, 3-41
iteration terminals, 3-41
setting count using auto-indexing, 4-5
stacked shift registers, 3-50

Formula Nodes
entering C-like statements, 3-78
entering equations, 3-78

front panel
array controls and indicators, 4-3
creating cluster controls and indicators,

4-15

G
GPIB

communicating with instruments, 9-29
configuration software (Windows), 9-7

software architecture, 9-7
graphs

configuring, 3-57
multiple-plot waveform, 3-58
single-plot waveform, 3-58
XY, 6-2

grouping
data in arrays, 4-2
data in clusters, 4-15
data in strings, 3-18

H
help, 2-58

technical support, A-1
highlighting execution

debugging VIs, 5-5

I
I/O

communicating with instruments, 9-29
error, 5-13
GPIB software architecture, 9-7
serial, 9-3
serial hardware overview, 9-6
VISA, 9-23

icons, 6-4
creating, 6-4

incrementally running VIs, 5-6
indicators

assigning to connector pane, 6-8
string display types, 3-19
type definitions, 4-31

indicators and controls
Boolean, 2-13
creating arrays, 4-3
creating clusters, 4-15
numeric, 2-13
showing terminals, 2-22

inputs
setting, 6-9

instances of subVIs
determining, 5-10

Index

LabVIEW Introduction Course Manual I-4 ni.com

suspending execution, 5-9
instrument drivers (NI resources), A-1
instruments

types, 9-2
iteration terminals

For Loops, 3-41
While Loops, 3-33

K
KnowledgeBase, A-1

L
Labeling tool, 2-32
LabVIEW Help, 2-58

M
multiple-plot waveform graphs, 3-58
multiplot XY graphs, 3-60

N
National Instruments support and services,

A-1
NI

Certification, A-2
nodes, 2-19
numeric controls and indicators, 2-13
numeric conversion, 3-42

O
objects

wiring automatically on block diagram,
2-22

online help, 2-58
Operating tool, 2-29
order

in clusters, 4-16
order of cluster elements, 4-16
order of execution, 2-39
outputs

setting, 6-9

P
palettes

Tools, 2-29
Positioning tool, 2-30
Probe tool

See probes
probes

debugging VIs, 5-7
default, 5-7
generic, 5-7
indicators, 5-7
supplied, 5-7
types of, 5-7

programming examples (NI resources), A-1
Project Explorer window, 2-8

R
Read from Measurement File VI, 10-12
Read From Spreadsheet File VI, 10-11
refnums

file I/O, 10-9

S
scope chart, 3-55
SCXI

signal conditioning
amplification, 7-6
linearization, 7-7
phenomena and transducers (table),

7-4
transducer excitation, 7-7

searching
for controls, VIs, and functions, 2-26

serial port communication, 9-3
hardware overview, 9-6

shift registers
stacked, 3-50

signal conditioning
See also SCXI
amplification, 7-6
linearization, 7-7
phenomena and transducers (table), 7-4

Index

© National Instruments Corporation I-5 LabVIEW Introduction Course Manual

transducer excitation, 7-7
single-plot waveform graphs, 3-58
single-plot XY graphs, 3-60
single-stepping

debugging VIs, 5-6
smart probes

See probes
software (NI resources), A-1
state machine

design pattern
Case structure, 11-8
controlling

default transition, 11-7
enumerated type control, 11-7
multiple state transitions, 11-8
two-state transition, 11-7

State Diagram Toolkit, 11-9
transition array, 11-9

infrastructure, 11-6
Step Into button, 2-23
Step Out button, 2-23
stepping through VIs

debugging VIs, 5-6
strict type definitions, 4-32
strings, 3-18

display types, 3-19
strip chart, 3-55
structures

Case, 3-66
stacked shift registers, 3-50
tunnels, 3-67

subVIs
assigning controls and indicators to

connector pane, 6-8
configuring the connector pane, 6-6
creating icons, 6-4
determining current instance, 5-10
displaying chain of callers, 5-10
modifying connector pane, 6-7
setting inputs and outputs, 6-9
suspending execution, 5-9

supplied probes, 5-7
support

technical, A-1
suspending execution, 5-9
sweep chart, 3-55

T
technical support, A-1
terminals, 2-19

conditional, 3-32
Context Help window appearance, 6-9
count, 3-41
iteration on For Loops, 3-41
iteration on While Loops, 3-33
optional, 6-9
recommended, 6-9
required, 6-9
selector, 3-66
showing on block diagram, 2-22

toolbar
block diagram, 2-23

tools
Labeling, 2-32
Operating, 2-29
positioning, 2-30
wiring, 2-32

Tools palette, 2-29
training (NI resources), A-2
transducers

excitation, 7-7
linearization, 7-7
phenomena and transducers (table), 7-4

troubleshooting (NI resources), A-1
tunnels, 3-67
type definitions, 4-31

strict, 4-32

U
Unbundle By Name function, 4-18
Unbundle function, 4-18
undefined data

preventing, 5-11
user probes

See probes

Index

LabVIEW Introduction Course Manual I-6 ni.com

V
VIs

broken, 2-45, 5-2
configuring the connector pane, 6-6
correcting, 2-45, 5-2
error handling, 5-12
icons, 2-19, 6-2
nodes, 2-19

VISA, 9-23
terminalogy, 9-23

W
waveform charts

wiring, 3-56
waveform graphs

multiple-plot, 3-58
single-plot, 3-58

Web resources, A-1
While Loops

auto-indexing arrays, 4-4
conditional terminals, 3-32
error handling, 5-14
iteration terminals, 3-33
stacked shift registers, 3-50

wires
automatic, 2-22

wiring
automatically, 2-22
charts, 3-56
tunnels, 3-67

Wiring tool, 2-32
Write to Measurement File VI, 10-11
Write to Spreadsheet File VI, 10-11

X
XY graphs

configuring, 3-57
multiplot, 3-60
single-plot, 3-60

Course Evaluation

Course ___

Location ___

Instructor ___ Date ____________________________________

Student Information (optional)
Name __

Company ___ Phone ___________________________________

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts ❍ ❍ ❍ ❍ ❍

Instructor’s knowledge of the subject matter ❍ ❍ ❍ ❍ ❍

Instructor’s presentation skills ❍ ❍ ❍ ❍ ❍

Instructor’s sensitivity to class needs ❍ ❍ ❍ ❍ ❍

Instructor’s preparation for the class ❍ ❍ ❍ ❍ ❍

Course
Training facility quality ❍ ❍ ❍ ❍ ❍

Training equipment quality ❍ ❍ ❍ ❍ ❍

Was the hardware set up correctly? ❍ Yes ❍ No

The course length was ❍ Too long ❍ Just right ❍ Too short

The detail of topics covered in the course was ❍ Too much ❍ Just right ❍ Not enough

The course material was clear and easy to follow. ❍ Yes ❍ No ❍ Sometimes

Did the course cover material as advertised? ❍ Yes ❍ No

I had the skills or knowledge I needed to attend this course. ❍ Yes ❍ No If no, how could you have been

better prepared for the course? __

What were the strong points of the course? __

What topics would you add to the course? ___

What part(s) of the course need to be condensed or removed? __

What needs to be added to the course to make it better? __

How did you benefit from taking this course? __

Are there others at your company who have training needs? Please list. ____________________________________

Do you have other training needs that we could assist you with? ___

How did you hear about this course? ❍ NI Web site ❍ NI Sales Representative ❍ Mailing ❍ Co-worker

❍ Other ___

