
LabVIEWTM Basics II
Development
Course Manual

Course Software Version 8.0
October 2005 Edition
Part Number 320629N-01

LabVIEW Development Course Manual

Copyright

© 1993–2005 National Instruments Corporation. All rights reserved.
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including
photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent
of National Instruments Corporation.

In regards to components used in USI (Xerces C++, ICU, and HDF5), the following copyrights apply. For a listing of the conditions and
disclaimers, refer to the USICopyrights.chm.

This product includes software developed by the Apache Software Foundation (http:/www.apache.org/).
Copyright

© 1999 The Apache Software Foundation. All rights reserved.

Copyright © 1995–2003 International Business Machines Corporation and others. All rights reserved.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999, 2000, 2001, 2003 by the Board of Trustees of the University of Illinois. All rights reserved.

Trademarks
National Instruments, NI, ni.com, and LabVIEW are trademarks of National Instruments Corporation. Refer to the Terms of Use section
on ni.com/legal for more information about National Instruments trademarks.

Other product and company names mentioned herein are trademarks or trade names of their respective companies.

Members of the National Instruments Alliance Partner Program are business entities independent from National Instruments and have
no agency, partnership, or joint-venture relationship with National Instruments.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software,
the patents.txt file on your CD, or ni.com/legal/patents.

Worldwide Technical Support and Product Information
ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599, Canada 800 433 3488,
China 86 21 6555 7838, Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, India 91 80 51190000, Israel 972 0 3 6393737, Italy 39 02 413091,
Japan 81 3 5472 2970, Korea 82 02 3451 3400, Lebanon 961 0 1 33 28 28, Malaysia 1800 887710, Mexico 01 800 010 0793,
Netherlands 31 0 348 433 466, New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150,
Portugal 351 210 311 210, Russia 7 095 783 68 51, Singapore 1800 226 5886, Slovenia 386 3 425 4200,
South Africa 27 0 11 805 8197, Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51,
Taiwan 886 02 2377 2222, Thailand 662 278 6777, United Kingdom 44 0 1635 523545

For further support information, refer to the Additional Information and Resources appendix. To comment on National Instruments
documentation, refer to the National Instruments Web site at ni.com/info and enter the info code feedback.

© National Instruments Corporation iii LabVIEW Development Course Manual

Contents

Student Guide
A. Course Description ...vi
B. What You Need to Get Started ...vii
C. Installing the Course Software..vii
D. Course Goals...viii
E. Course Conventions ..ix

Lesson 1
Common Design Techniques

A. Single Loop Architectures ..1-2
B. Parallelism ..1-6
Exercise 1-1 Concept: Evaluate Parallelism..1-8
C. Multiple Loop Architectures...1-9
D. Timing a Design Pattern ...1-13

Lesson 2
Communicating Among Multiple Loops

A. Variables ...2-2
B. Functional Global Variables ...2-11
Exercise 2-1 Variables VI..2-14
C. Race Conditions ..2-23
Exercise 2-2 Concept: Bank VI ...2-30
D. Synchronizing Data Transfer ..2-33
Exercise 2-3 Project: Queue Data..2-37
Exercise 2-4 Optional: Global Data Project ..2-52

Lesson 3
Improving an Existing VI

A. Refactoring Inherited Code...3-2
Exercise 3-1 Project: Refactor...3-5
B. Typical Issues ...3-23
Exercise 3-2 Concept: Typical Issues..3-27

Contents

LabVIEW Development Course Manual iv ni.com

Lesson 4
Controlling the User Interface

A. VI Server Architecture..4-2
B. Property Nodes ...4-3
Exercise 4-1 Temperature Limit VI...4-5
C. Control References ...4-9
Exercise 4-2 Set Plot Names ...4-13
D. Invoke Nodes ..4-23
Exercise 4-3 Front Panel Properties VI ...4-24

Lesson 5
Advanced File I/O Techniques

A. File Formats ..5-2
B. Binary Files...5-5
Exercise 5-1 Bitmap File Writer VI ..5-12
C. TDM Files...5-20
Exercise 5-2 TDM Logger VI ...5-32
Exercise 5-3 TDM Query ..5-47

Lesson 6
Creating and Distributing Applications

A. LabVIEW Features for Project Development...6-2
Exercise 6-1 Concept: LabVIEW Project Management Tools..............................6-5
B. Preparing the Application ...6-7
C. Building the Application and Installer..6-8
Exercise 6-2 Concept: Creating a Stand-Alone Application6-10

Appendix A
Additional Information and Resources

Index

Course Evaluation

© National Instruments Corporation v LabVIEW Development Course Manual

Student Guide

Thank you for purchasing the LabVIEW Basics II: Development course
kit. You can begin developing an application soon after you complete
the exercises in this manual. This course manual and the accompanying
software are used in the two-day, hands-on LabVIEW Basics II:
Development course.

You can apply the full purchase of this course kit toward the corresponding
course registration fee if you register within 90 days of purchasing the kit.
Visit ni.com/training for online course schedules, syllabi, training
centers, and class registration.

Note For course manual updates and corrections, refer to ni.com/info and enter the
info code rdlvc2.

The LabVIEW Basics II: Development course is part of a series of courses
designed to build your proficiency with LabVIEW and help you prepare for
exams to become an NI Certified LabVIEW Developer and NI Certified
LabVIEW Architect. The following illustration shows the courses that are
part of the LabVIEW training series. Refer to ni.com/training for more
information about NI Certification.

LabVIEW Intermediate I*

LabVIEW Intermediate II*

New User Experienced User Advanced User

LabVIEW Advanced
Application Development

LabVIEW Advanced
Application Development

Certified LabVIEW
Associate Developer Exam

Certified LabVIEW
Developer Exam

Certified LabVIEW
Architect Exam

Skills tested:
• LabVIEW application
 development expertise

Skills learned:
• Modular application development
• Structured design and
 development practices
• Memory management and VI
 performance improvement

Skills learned:
• Large application design
• Code reuse maximization
• Object-oriented programming
 in LabVIEW

Skills tested:
• LabVIEW application
 development mastery

Skills tested:
• LabVIEW environment
 knowledge

Skills learned:
• LabVIEW environment
 navigation
• Basic application creation
 using LabVIEW

Certifications

Courses

Hardware-Based Courses:
• Data Acquisition and Signal Conditioning • Modular Instruments • Instrument Control • Machine Vision
• Motion Control • LabVIEW Real-Time

*Core courses are strongly recommended to realize maximum productivity gains when using LabVIEW.

LabVIEW Basics I*

Skills learned:
• LabVIEW environment
 navigation
• Basic application creation
 using LabVIEW

LabVIEW Basics II*

Begin
Here

Student Guide

LabVIEW Development Course Manual vi ni.com

A. Course Description
Use this manual to learn about LabVIEW programming concepts,
techniques, features, VIs, and functions you can use to create test and
measurement, data acquisition, instrument control, datalogging,
measurement analysis, and report generation applications.

This course manual assumes that you are familiar with Windows,
Macintosh, or UNIX; that you have experience writing algorithms in the
form of flowcharts or block diagrams; and that you have taken the LabVIEW
Basics I: Introduction course or have equivalent experience.

The course manual is divided into lessons, each covering a topic or a set of
topics. Each lesson consists of the following:

• An introduction that describes the purpose of the lesson and what you
will learn

• A description of the topics in the lesson

• A set of exercises to reinforce those topics

• A set of additional exercises to complete if time permits

• A summary that outlines important concepts and skills taught in the
lesson

Several exercises in this manual use a plug-in multifunction data acquisition
(DAQ) device connected to a DAQ Signal Accessory containing a
temperature sensor, function generator, and LEDs.

Exercises that explicitly require hardware are indicated with an icon, shown
at left. You also can substitute other hardware for those previously
mentioned. For example, you can use another National Instruments
DAQ device connected to a signal source, such as a function generator.

Student Guide

© National Instruments Corporation vii LabVIEW Development Course Manual

B. What You Need to Get Started
Before you use this course manual, make sure you have all of the following
items:

❑ Windows 2000 or later installed on your computer; this course is
optimized for Windows XP

❑ Multifunction DAQ device configured as device 1 using Measurement
& Automation Explorer (MAX)

❑ DAQ Signal Accessory, wires, and cable

❑ LabVIEW Professional Development System 8.0 or later

❑ LabVIEW Basics II: Development course CD, from which you install the
following files:

C. Installing the Course Software
Complete the following steps to install the course software.

1. Insert the course CD in your computer. The LabVIEW Basics Course
Material Setup dialog box appears.

2. Click the Next button.

3. Choose Typical setup type and click the Install button to begin the
installation.

4. Click the Finish button to exit the Setup Wizard.

5. The installer places the Exercises and Solutions folders at the top
level of the C:\ directory.

Exercise files are located in the C:\Exercises\LabVIEW Basics II
directory.

Filename Description

Exercises Folder containing VIs used in the course

Solutions Folder containing completed course exercises

Student Guide

LabVIEW Development Course Manual viii ni.com

Repairing or Removing Course Material
You can repair or remove the course material using the Add or Remove
Programs feature on the Windows Control Panel. Repair the course
material to overwrite existing course material with the original, unedited
versions of the files. Remove the course material if you no longer need the
files on your machine.

D. Course Goals
This course prepares you to do the following:

• Understand the VI development process

• Understand some common VI programming architectures

• Design effective user interfaces (front panels)

• Efficiently transfer data among parallel processes

• Use advanced file I/O techniques

• Use LabVIEW to create applications

• Use property nodes and invoke nodes in your VI

You will apply these concepts as you build a project that uses VIs you create
throughout the course. While these VIs individually illustrate specific
concepts and features in LabVIEW, they constitute part of a larger project
built throughout the course.

This course does not describe any of the following:

• LabVIEW programming methods covered in the LabVIEW Basics I:
Introduction course

• Every built-in VI, function, or object; refer to the LabVIEW Help for
more information about LabVIEW features not described in this course

• Developing a complete application for any student in the class; refer to
the NI Example Finder, available by selecting Help»Find Examples,
for example VIs you can use and incorporate into VIs you create

Student Guide

© National Instruments Corporation ix LabVIEW Development Course Manual

E. Course Conventions
The following conventions appear in this course manual:

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a tip, which alerts you to advisory information.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

This icon indicates that an exercise requires a plug-in DAQ device.

bold Bold text denotes items that you must select or click in the software, such as
menu items and dialog box options. Bold text also denotes parameter names,
controls and buttons on the front panel, dialog boxes, sections of dialog
boxes, menu names, and palette names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. Italic text also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

Platform Text in this font denotes a specific platform and indicates that the text
following it applies only to that platform.

© National Instruments Corporation 1-1 LabVIEW Development Course Manual

1
Common Design Techniques

You can develop better programs in LabVIEW and in other programming
languages if you follow consistent programming techniques and
architectures. This lesson discusses two different categories of
programming architectures: single loops and multiple loops. Collectively,
these architectures are known as design patterns.

Single loop architectures include the simple VI, the general VI, and the state
machine design patterns.

Multiple loop architectures include the parallel loop VI, the master/slave,
and the producer/consumer design patterns.

Understanding which design patterns to start with is key to building efficient
LabVIEW VIs.

Topics
A. Single Loop Architectures

B. Parallelism

C. Multiple Loop Architectures

D. Timing a Design Pattern

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-2 ni.com

A. Single Loop Architectures
You learned to design three different types of architectures in the LabVIEW
Basics I: Introduction course—the simple architecture, the general
architecture, and the state machine.

Simple VI Design Patterns
When performing calculations or making quick lab measurements, you do
not need a complicated architecture. Your program might consist of a single
VI that takes a measurement, performs calculations, and either displays the
results or records them to disk. The simple VI design pattern usually does
not require a specific start or stop action from the user. The user just clicks
the Run button. Use this architecture for simple applications or for
functional components within larger applications. You can convert these
simple VIs into subVIs that you use as building blocks for larger
applications.

Figure 1-1 displays the block diagram of the Determine Warnings VI built
in the LabVIEW Basics I: Introduction course. This VI performs a single
task—it determines what warning to output dependent on a set of inputs.
You can use this VI as a subVI whenever you must determine the warning
level.

Notice that this VI contains no start or stop actions from the user. In this VI
all block diagram objects are connected through dataflow. You can
determine the overall order of operations by following the flow of data. For
example, the Not Equal function cannot execute until the Greater Than or
Equal, the Less Than or Equal, and both Select functions have executed.

Figure 1-1. Simple VI Architecture

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-3 LabVIEW Development Course Manual

General VI Design Patterns
A general VI design pattern has three main phases. Each phase may contain
code that follows another type of design pattern. The three main phases
include the following:

Startup This phase initializes hardware, reads
configuration information from files, or prompts
the user for data file locations.

Main Application This phase consists of at least one loop that
repeats until the user decides to exit the program
or the program terminates for other reasons such
as I/O completion.

Shutdown This phase closes files, writes configuration
information to disk, or resets I/O to the default
state.

Figure 1-2 shows the general VI design pattern.

Figure 1-2. General VI Design Pattern

In Figure 1-2, the error cluster wires control the execution order of the three
sections. The While Loop does not execute until the Start Up VI finishes
running and returns the error cluster. Consequently, the Shut Down VI
cannot run until the main program in the While Loop finishes and the error
cluster data leaves the loop. Most loops require a Wait function, especially
if that loop monitors user input on the front panel. Without the Wait
function, the loop might run continuously and use all of the computer
system resources. The Wait function forces the loop to run asynchronously
even if you specify 0 milliseconds as the wait period. If the operations inside

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-4 ni.com

the main loop react to user inputs, you can increase the wait period to a level
acceptable for reaction times. A wait of 100–200 ms is usually good because
most users cannot detect that amount of delay between clicking a button on
the front panel and the subsequent event execution.

For simple applications, the main application loop is obvious and contains
code that follows the Simple VI design pattern. When the program incudes
complicated user interfaces or multiple tasks such as user actions, I/O
triggers, and so on, the main application phase gets more complicated.

State Machine Design Pattern
The state machine design pattern is actually a modification of the general
design pattern. It usually has a start up and shut down phase. However, the
main application phase consists of a Case structure embedded in the loop.
This architecture allows you to run different code each time the loop
executes depending upon some condition. Each case defines a state of the
machine, hence the name, state machine. Use this design pattern for VIs that
are easily divided into several simpler tasks, such as VIs that act as a user
interface.

A state machine in LabVIEW consists of a While Loop, a Case structure,
and a shift register. Each state of the state machine is a separate case in
the Case structure. You place VIs and other code that the state should
execute within the appropriate case. A shift register stores the state that
should execute upon the next iteration of the loop. The block diagram of a
state machine VI with five states appears in Figure 1-3. Figure 1-4 shows the
hidden cases, or states, of the state machine.

Figure 1-3. State Machine with Startup State

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-5 LabVIEW Development Course Manual

Figure 1-4. Idle (Default), Event 1, Event 2, and Shutdown States

In the state machine design pattern, you design the list of possible tasks, or
states, and then map them to each case. For the VI in the previous example,
the possible states are Startup, Idle, Event 1, Event 2, and Shutdown. An
enumerated constant stores the states. Each state has its own case in the Case
structure. The outcome of one case determines the case that next executes.
The shift register stores a value that determines which case runs next. If an
error occurs in any of the states, the Shutdown case is called.

The state machine design pattern can make the block diagram much smaller,
and therefore, easier to read and debug. Another advantage of the state
machine architecture is that each case determines the next state, unlike
Sequence structures that cannot skip a frame.

A disadvantage of the state machine design pattern is that with the approach
in the previous example, it is possible to skip states. If two states in the
structure are called at the same time, this model handles only one state, and
the other state does not execute. Skipping states can lead to errors that are
difficult to debug because they are difficult to reproduce. More complex
versions of the state machine design pattern contain extra code that builds a
queue of events, or states, so that you do not miss a state. Refer to Lesson 2,
Common Design Techniques, for more information on queues.

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-6 ni.com

B. Parallelism
Parallelism is a way to execute multiple tasks at the same time. To discuss
parallelism, consider the example of creating and displaying two sine waves
at a different frequencies. You place one sine wave in a loop, and the second
sine wave in a different loop.

A challenge in programming parallel tasks is passing data among multiple
loops without creating a data dependency. For example, if you pass the data
using a wire, the loops are no longer parallel. In the multiple sine wave
example, you may want to share a single stop button between the loops,
as shown in Figure 1-5.

Figure 1-5. Parallel Loops Front Panel

Examine what happens when you try to share data among parallel loops
with a wire.

Method 1 (Incorrect)
Place the Loop Control terminal outside of both loops and wire it to each
conditional terminal, as shown in Figure 1-6. The status of the Boolean
control is a data input to both loops, therefore the Loop Control terminal is
read only once, before either While Loop begins executing. If True is passed
to the loops, the While Loops run indefinitely. Turning off the switch does
not stop the VI because the switch is not read during the iteration of either
loop.

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-7 LabVIEW Development Course Manual

Figure 1-6. Parallel Loops Method 1 Example

Method 2 (Incorrect)
Move the Loop Control terminal inside Loop 1 so that it is read in each
iteration of Loop 1, as shown in the following block diagram. Although
Loop 1 terminates properly, Loop 2 does not execute until it receives all its
data inputs. Loop 1 does not pass data out of the loop until the loop stops,
so Loop 2 must wait for the final value of the Loop Control, available only
after Loop 1 finishes. Therefore, the loops do not execute in parallel. Also,
Loop 2 executes for only one iteration because its conditional terminal
receives a False value from the Loop Control switch in Loop 1.

Figure 1-7. Parallel Loops Method 2 Example

Solution
If you could read the stop button from a file, you would no longer have a
dataflow dependency between the loops, as each loop can independently
access the file. However, reading and writing to files can be time
consuming, at least in processor time. Another way to accomplish this task
is to find the spot in memory where the stop button data is stored and read
that memory location directly. Refer to Lesson 2, Communicating Among
Multiple Loops, for information on methods for solving this problem.

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-8 ni.com

Exercise 1-1 Concept: Evaluate Parallelism

Goal
Evaluate situations that may require multiple parallel loops.

Description
1. Open Parallel_Loops.exe in the C:\Exercises\LabVIEW

Basics II\Parallel_Loops directory.

2. Follow the instructions given in the simulation.

3. Close the simulation when you are finished.

End of Exercise 1-1

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-9 LabVIEW Development Course Manual

C. Multiple Loop Architectures
You have learned a few different reasons for using parallelism in the
previous exercise. This section describes the following specific multiple
loop architectures: parallel loop, master/slave, and producer/consumer.

Parallel Loop Design Pattern
Some applications require the program to respond to and run several tasks
concurrently. One way of designing the main section of this application is
to assign a different loop to each task. For example, you might have a
different loop for each button on the front panel and for every other kind of
task, such as a menu selection, I/O trigger, and so on. Figure 1-8 shows this
parallel loop design pattern.

Figure 1-8. Parallel Loop Design Pattern

This structure is straightforward and appropriate for some simple- menu
type VIs, where you expect a user to select from one of several buttons that
perform different actions. The parallel loop design pattern lets you handle
multiple, simultaneous, independent tasks. In this design pattern,
responding to one action does not prevent the VI from responding to another
action. For example, if a user clicks a button that displays a dialog box,
parallel loops can continue to respond to I/O tasks.

However, the parallel loop design pattern requires you to coordinate and
communicate between different loops. The Stop button for the second loop
in 1-8 is a local variable. You cannot use wires to pass data between loops

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-10 ni.com

because doing so prevents the loops from running in parallel. Instead, you
must use a messaging technique for passing information among processes.
You will learn about using local variables, notifiers, or queues to message
between parallel loops in Lesson 2, Communicating Among Multiple
Loops.

Master/Slave Design Pattern
The master/slave design pattern consists of multiple parallel loops. Each of
the loops may execute tasks at different rates. One loop acts as the master,
and the other loops act as slaves. The master loop controls all the slave loops
and communicates with them using messaging techniques, as shown in
Figure 1-9.

Figure 1-9. Master/Slave Design Pattern

Use the master/slave design pattern when you need a VI to respond to user
interface controls while simultaneously collecting data. For example, you
want to build a VI that measures and logs a slowly changing voltage once
every five seconds. The VI acquires a waveform from a transmission line
and displays it on a graph every 100 ms. The VI also provides a user
interface that allows the user to change parameters for each acquisition. The
master/slave design pattern is well suited for this acquisition application.
For this application, the master loop contains the user interface. The voltage
acquisition occurs in one slave loop, while the graphing occurs in another
slave loop.

Using the standard master/slave design pattern approach to this VI, you
would put the acquisition processes in two separate While Loops, both of
them driven by a master loop that receives inputs from the user interface
controls. This ensures that the separate acquisition processes do not affect
each other, and that any delays caused by the user interface, such as
displaying a dialog box, do not delay any iterations of the acquisition
processes.

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-11 LabVIEW Development Course Manual

VIs that involve control also benefit from the use of master/slave design
patterns. Consider a VI where a user controls a free motion robotic arm
using buttons on a front panel. This type of VI requires efficient, accurate,
and responsive control because of the physical damage to the arm or
surroundings that might occur if control is mishandled. For example, if the
user instructs the arm to stop its downward motion, but the program is
occupied with the arm swivel control, the robotic arm might collide with the
support platform. Apply the master/slave design pattern to the application to
avoid these problems. In this case, the master loop handles the user
interface, and each controllable section of the robotic arm has its own slave
loop. Because each controllable section of the arm has its own loop and its
own piece of processing time, the user interface has more responsive control
of the robotic arm.

With a master/slave design pattern, it is important that no two While Loops
write to the same shared data. Ensure that no more than one While Loop
may write to any given piece of shared data. Refer to Lesson 2,
Communicating Among Multiple Loops, for more information about shared
data.

The slave must not take too long to respond to the master. If the slave is
processing a signal from the master and the master sends more than one
message to the slave, the slave receives only the latest message. This use of
the master/slave architecture could cause a loss of data. Use a master/slave
architecture only if you are certain that each slave task takes less time to
execute than the master loop.

Producer/Consumer Design Pattern
The producer/consumer design pattern is based on the master/slave design
pattern and enhances data sharing among multiple loops running at different
rates. Similar to the master/slave design pattern, the producer/consumer
design pattern separates tasks that produce and consume data at different
rates. The parallel loops in the producer/consumer design pattern are
separated into two categories—those that produce data and those that
consume the data produced. Data queues communicate data among the
loops. The data queues also buffer data among the producer and consumer
loops.

Tip A buffer is a memory device that stores temporary data between two devices, or in
this case, multiple loops.

Use the producer/consumer design pattern when you must acquire multiple
sets of data that must be processed in order. Suppose you want to build a VI
that accepts data while processing the data sets in the order they were
received. The producer/consumer pattern is ideal for this type of VI because
queuing (producing) the data occurs much faster than the data can be

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-12 ni.com

processed (consumed). You could put the producer and consumer in the
same loop for this application, but the processing queue could not add any
additional data until the first piece of data was completely processed. The
producer/consumer approach to this VI queues the data in the producer loop
and processes the data in the consumer loop as shown in Figure 1-10.

Tip Queue functions allow you to store a set of data that can be passed among multiple
loops running simultaneously or among VIs. Refer to Lesson 2, Communicating Among
Multiple Loops, for more information about queues.

Figure 1-10. Producer/Consumer Design Pattern

This design pattern allows the consumer loop to process the data at its own
pace, while the producer loop continues to queue additional data.

You also can use this design pattern to create a VI that analyzes network
communication. This type of VI requires two processes to operate at the
same time and at different speeds. The first process constantly polls the
network line and retrieves packets. The second process analyzes the packets
retrieved by the first process.

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-13 LabVIEW Development Course Manual

In this example, the first process acts as the producer because it supplies data
to the second process, which acts as the consumer. The producer/consumer
design pattern is an effective architecture for this VI. The parallel producer
and consumer loops handle the retrieval and analysis of data off the
network, and the queued communication between the two loops allows
buffering of the network packets retrieved. Buffering can become important
when network communication is busy. With buffering, packets can be
retrieved and communicated faster than they can be analyzed.

D. Timing a Design Pattern
This section discusses two forms of timing—execution timing and software
control timing. Execution timing uses timing functions to give the processor
time to complete other tasks. Software control timing involves timing a
real-world operation to perform within a set time period.

Execution Timing
You can time a design pattern explicitly or based on events that occur within
the VI. Explict timing provides the design pattern with a function that
specifically allows the processor time to complete other tasks, such as the
Wait Until Next ms Multiple function. When timing is based on events, the
design pattern waits for some action to occur before continuing and allows
the processor to complete other tasks while it waits.

Use explicit timing for design patterns such as the master/slave,
producer/consumer, and state machine. These design patterns perform some
type of polling while they execute.

Tip Polling is the process of making continuous requests for data from another device.
In LabVIEW, this generally means that the block diagram continuously asks if there is
data available, usually from the user interface.

For example, the master/slave design pattern shown in Figure 1-11 uses a
While Loop and a Case structure to implement the master loop. The master
executes continuously and polls for an event of some type, such as the user
pressing a switch. When the event occurs, the master sends a message to the
slave. You need to time the master so it does not take over the execution of
the processor. In this case, you typically use the Wait (ms) function to
regulate how frequently the master polls. Always use a timing function such
as the Wait (ms) function or the Wait Until Next ms Multiple function in any
design pattern that continually executes and needs to be regulated. If you do
not use a timing function in a continuously executing structure, LabVIEW
uses all the processor time, and background processes may not run.

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-14 ni.com

Figure 1-11. Master/Slave Design Pattern

Notice that the slave loop does not contain any form of timing. The use of
Synchronization functions, such as Queues and Notifiers, to pass messages
provides an inherent form of timing in the slave loop. The slave loop waits
for the Notifier function to receive a message. After the Notifier receives a
message, the slave executes on the message. This creates an efficient block
diagram that does not waste processor cycles by polling for messages. This
is an example of timing by waiting for an event.

When you implement design patterns where the timing is based on the
occurrence of events, you do not have to determine the correct timing
frequency because the execution of the design pattern occurs only when an
event occurs. In other words, the design pattern executes only when it
receives an event.

Software Control Timing
Many applications that you create must execute an operation for a specified
amount of time. Consider implementing a state machine design pattern for
a temperature data acquisition system. If the specifications require that the
system acquire temperature data for 5 minutes, you could remain in the
acquisition state until the 5 minutes is up. However, during that time you
cannot process any user interface actions such as stopping the VI. To

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-15 LabVIEW Development Course Manual

process these user interface action, you must implement timing so that the
VI continually executes for the specified time. Implementing this timing
involves keeping the application executing while monitoring a real-time
clock.

In the LabVIEW Basics I course, you implemented software control timing
to monitor the time until the VI should acquire the next piece of data, as
shown in Figure 1-12. Notice the use of the Elapsed Time Express VI to
keep track of a clock.

Figure 1-12. Use of the Elapsed Time Express VI

If you use the Wait (ms) function or the Wait Until Next ms Multiple
function to perform software timing, the wait function must finish before the
function you are timing can execute. These functions are not the preferred
method for performing software control timing, especially for VIs where the
system must continually execute. A good pattern to use for timing is to cycle
the current time throughout the VI, as shown in Figure 1-13.

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-16 ni.com

Figure 1-13. Software Timing Using the Get Date/Time In Seconds Function

The Get Date/Time In Seconds function, connected to the left terminal of
the shift register, initializes the shift register with the current system time.
Each state uses another Get Date/Time In Seconds function and compares
the current time to the start time. If the difference in these two times is
greater or equal to the wait time, the state finishes executing and the rest of
the application executes. Always use the Get Date/Time In Seconds
function instead of the Tick Count function for this type of comparison
because the value of the Tick Count function can rollover to 0 during
execution.

Refer to Lesson 2, Communicating Among Multiple Loops, for more
information on creating a timing functional global variable to make the
timing functionality modular and reusable.

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-17 LabVIEW Development Course Manual

Self-Review: Quiz

1. Software control timing allows the processor time to complete other
tasks.

a. True

b. False

2. Execution timing is a method for allowing the processor time to
complete other tasks.

a. True

b. False

3. You can use a wire to pass data between parallel loops.

a. True

b. False

Self-Review: Quiz Answers

1. FALSE: Software control timing is a method for allowing the processor
time to complete other tasks.

2. TRUE: Execution timing is a method for allowing the processor time to
complete other tasks.

3. FALSE: You can use a wire to pass data between parallel loops.

Lesson 1 Common Design Techniques

© National Instruments Corporation 1-19 LabVIEW Development Course Manual

Notes

Lesson 1 Common Design Techniques

LabVIEW Development Course Manual 1-20 ni.com

Notes

© National Instruments Corporation 2-1 LabVIEW Development Course Manual

2
Communicating Among Multiple Loops

In Lesson 1, Common Design Techniques, you learned the difficulties of
transferring data among multiple loops without imposing a serial execution
order on the loops. This lesson describes messaging techniques for
transferring data among multiple loops. These messaging techniques
include variables, notifiers, and queues. You also learn about the
programming issues involved in using these techniques and methods for
overcoming these challenges.

Topics
A. Variables

B. Functional Global Variables

C. Race Conditions

D. Synchronizing Data Transfer

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-2 ni.com

A. Variables
In LabVIEW, the flow of data rather than the sequential order of commands
determines the execution order of block diagram elements. Therefore, you
can create block diagrams that have simultaneous operations. For example,
you can run two For Loops simultaneously and display the results on the
front panel, as shown in the following block diagram.

However, if you use wires to pass data between parallel block diagrams,
they no longer operate in parallel. Parallel block diagrams can be two
parallel loops on the same block diagram without any data flow dependency
or two separate VIs that are called at the same time.

The block diagram in Figure 2-1 does not run the two loops in parallel
because of the wire between the two subVIs.

Figure 2-1. While Loops with a Data Dependency Imposed by Wire

The wire creates a data dependency, because the second loop does not start
until the first loop finishes and passes the data through its tunnel. To make
the two loops run concurrently, remove the wire. To pass data between the
subVIs, use another technique, such as a variable.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-3 LabVIEW Development Course Manual

In LabVIEW, variables are block diagram elements that allow you to access
or store data in another location. The actual location of the data varies
depending upon the type of the variable. Local variables store data in front
panel controls and indicators. Global variables and single process shared
variables store data in special repositories that you can access from multiple
VIs. Functional global variables store data in while loop shift registers.
Regardless of where the variable stores data, all variables allow you to
circumvent normal dataflow by passing data from one place to another
without connecting the two places with a wire. For this reason, variables are
useful in parallel architectures, but also have certain drawbacks, such as race
conditions.

Using Variables in a Single VI
Local variables transfer data within a single VI.

Creating Local Variables
Right-click an existing front panel object or block diagram terminal and
select Create»Local Variable from the shortcut menu to create a local
variable. A local variable icon for the object appears on the block diagram.

You also can select a local variable from the Functions palette and place it
on the block diagram. The local variable node, shown as follows, is not yet
associated with a control or indicator.

To associate a local variable with a control or indicator, right-click the local
variable node and select Select Item from the shortcut menu. The expanded
shortcut menu lists all the front panel objects that have owned labels.

LabVIEW uses owned labels to associate local variables with front panel
objects, so label the front panel controls and indicators with descriptive
owned labels.

Reading and Writing to Variables
After you create a local or global variable, you can read data from a variable
or write data to it. By default, a new variable receives data. This kind of
variable works as an indicator and is a write local or global. When you write
new data to the local or global variable, the associated front panel control or
indicator updates to the new data.

You also can configure a variable to behave as a data source, or a read local
or global. Right-click the variable and select Change To Read from the
shortcut menu to configure the variable to behave as a control. When this

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-4 ni.com

node executes, the VI reads the data in the associated front panel control or
indicator.

To change the variable to receive data from the block diagram rather than
provide data, right-click the variable and select Change To Write from the
shortcut menu.

On the block diagram, you can distinguish read locals or globals from write
locals or globals the same way you distinguish controls from indicators. A
read local or global has a thick border similar to a control. A write local or
global has a thin border similar to an indicator.

Local Variable Example
In the Parallelism section of Lesson 1 Common Design Techniques, you
saw an example of a VI that used parallel loops. The front panel contained
a single switch that stopped the data generation displayed on two graphs. On
the block diagram, the data for each chart is generated within an individual
While Loop to allow for separate timing of each loop. The Loop Control
terminal stopped both While Loops. In this example, the two loops must
share the switch to stop both loops at the same time.

For both charts to update as expected, the While Loops must operate in
parallel. Connecting a wire between While Loops to pass the switch data
makes the While Loops execute serially, rather than in parallel. Figure 2-2
shows a block diagram of this VI using a local variable to pass the switch
data.

Loop 2 reads a local variable associated with the switch. When you set the
switch to False on the front panel, the switch terminal in Loop 1 writes a
False value to the conditional terminal in Loop 1. Loop 2 reads the Loop
Control local variable and writes a False to the Loop 2 conditional terminal.
Thus, the loops run in parallel and terminate simultaneously when you turn
off the single front panel switch.

Figure 2-2. Local Variable Used to Stop Parallel Loops

With a local variable, you can write to or read from a control or indicator on
the front panel. Writing to a local variable is similar to passing data to any

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-5 LabVIEW Development Course Manual

other terminal. However, with a local variable you can write to it even if it
is a control or read from it even if it is an indicator. In effect, with a local
variable, you can access a front panel object as both an input and an output.

For example, if the user interface requires users to log in, you can clear the
Login and Password prompts each time a new user logs in. Use a local
variable to read from the Login and Password string controls when a user
logs in and to write empty strings to these controls when the user logs out.

Using Variables Among VIs
You also can use variables to access and pass data among several VIs that
run simultaneously. A local variable shares data within a VI; a global
variable also shares data, but it shares data with multiple VIs. For example,
suppose you have two VIs running simultaneously. Each VI contains a
While Loop and writes data points to a waveform chart. The first VI
contains a Boolean control to terminate both VIs. You can use a global
variable to terminate both loops with a single Boolean control. If both loops
were on a single block diagram within the same VI, you could use a local
variable to terminate the loops.

You also can use a single process shared variable in the same way you use
a global variable. A shared variable is similar to a local variable or a global
variable, but allows you to share data across a network. A shared variable
can be single-process or network published. Although you do not learn to
use network published shared variables in this course, by using the
single-process shared variable, you can later change to a network published
shared variable without much difficulty.

Use a global variable to share data among VIs on the same computer,
especially if you do not use a project file. Use a single process shared
variable if you may need to share the variable information among VIs on
multiple computers in the future.

Creating Global Variables
Use global variables to access and pass data among several VIs that run
simultaneously. Global variables are built-in LabVIEW objects. When you
create a global variable, LabVIEW automatically creates a special global
VI, which has a front panel but no block diagram. Add controls and
indicators to the front panel of the global VI to define the data types of the
global variables it contains. In effect, this front panel is a container from
which several VIs can access data.

For example, suppose you have two VIs running simultaneously. Each VI
contains a While Loop and writes data points to a waveform chart. The first
VI contains a Boolean control to terminate both VIs. You must use a global
variable to terminate both loops with a single Boolean control. If both loops

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-6 ni.com

were on a single block diagram within the same VI, you could use a local
variable to terminate the loops.

Select a global variable, shown as follows, from the Functions palette and
place it on the block diagram.

Double-click the global variable node to display the front panel of the global
VI. Place controls and indicators on this front panel the same way you do on
a standard front panel.

LabVIEW uses owned labels to identify global variables, so label the front
panel controls and indicators with descriptive owned labels.

You can create several single global VIs, each with one front panel object,
or you can create one global VI with multiple front panel objects. A global
VI with multiple objects is more efficient because you can group related
variables together. The block diagram of a VI can include several global
variable nodes that are associated with controls and indicators on the front
panel of a global VI. These global variable nodes are either copies of the
first global variable node that you placed on the block diagram of the global
VI, or they are the global variable nodes of global VIs that you placed on the
current VI. You place global VIs on other VIs the same way you place
subVIs on other VIs. Each time you place a new global variable node on a
block diagram, LabVIEW creates a new VI associated only with that global
variable node and copies of it.

Figure 2-3 shows a global variable front panel with a numeric, a string, and
a cluster containing a numeric and a Boolean control. The toolbar does not
show the Run, Stop, or related buttons as a normal front panel.

Figure 2-3. Global Variable Front Panel

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-7 LabVIEW Development Course Manual

After you finish placing objects on the global VI front panel, save it and
return to the block diagram of the original VI. You must then select the
object in the global VI that you want to access. Right-click the global
variable node and select a front panel object from the Select Item shortcut
menu. The shortcut menu lists all the front panel objects in the global VI that
have owned labels.

 You also can use the Operating tool or Labeling tool to click the global
variable node and select the front panel object from the menu that displays.

If you want to use this global variable in other VIs, select Functions»All
Functions»Select a VI. By default, the global variable is associated with
the first front panel object with an owned label that you placed in the global
VI. Right-click the global variable node you placed on the block diagram
and select a front panel object from the Select Item shortcut menu to
associate the global variable with the data from another front panel object.

Creating Single Process Shared Variables
You must use a project file to use a shared variable. To create a single
process shared variable, right-click My Computer in the Project Explorer
window and select New»Variable. The Shared Variable dialog box
appears, as shown in Figure 2-4.

Figure 2-4. Shared Variable Properties Dialog Box

Under Variable Type, select Single Process. Give the variable a name and
a data type. After you create the global variable, it automatically appears in

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-8 ni.com

a new library in your project file. Save the library. You can additional global
variables to this library as needed. You can drag and drop the variable from
the listing in the Project Explorer window, directly to the block diagram.
Use the short-cut menu to switch between writing or reading. Use the error
clusters on the variable to impose dataflow.

Using Variables Carefully
Local and global variables are advanced LabVIEW concepts. They are
inherently not part of the LabVIEW dataflow execution model. Block
diagrams can become difficult to read when you use local and global
variables, so you should use them carefully. Misusing local and global
variables, such as using them instead of a connector pane or using them to
access values in each frame of a sequence structure, can lead to unexpected
behavior in VIs. Overusing local and global variables, such as using them to
avoid long wires across the block diagram or using them instead of data
flow, slows performance.

Variables often are used unnecessarily. The example in Figure 2-5 shows a
traffic light application implemented as a state machine. Each state updates
the lights for the next stage of the light sequence. In the state shown, the east
and west traffic has a green light, while the north and south traffic has a red
light. This stage waits for 4 seconds, as shown by the Wait (ms) function.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-9 LabVIEW Development Course Manual

Figure 2-5. Too Many Variables Used

The example shown in Figure 2-6 accomplishes exactly the same task, but
more efficiently and using a better design. Notice that this example is much
easier to read and understand than the previous example, mostly by reducing
variable use. By placing the indicators in the While Loop outside of the Case
structure, the indicators can update after every state without using a
variable. This example is less difficult to modify for further functionality,
such as adding left turn signals, than the previous example.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-10 ni.com

Figure 2-6. Variable Use Reduction

Initializing Variables

Verify that the local and global variables contain known data values before
the VI runs. Otherwise, the variables might contain data that cause the VI to
behave incorrectly.

If you do not initialize the variable before the VI reads the variable for the
first time, the variable contains the default value of the associated front
panel object.

Figure 2-7 shows a common mistake when using variables. A shared
variable synchronizes the stop conditions for two loops. This example
operates the first time it runs, because the default value of a Boolean is
False. However, each time this VI runs the Stop control writes a True value
into the variable. Therefore, the second and subsequent times that this VI
runs, the lower loop stops after only a single iteration unless the first loop
updates the variable quickly enough.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-11 LabVIEW Development Course Manual

Figure 2-7. Failing to Initialize a Shared Variable

Figure 2-8 shows the proper implementation of the program. Initialize the
variable before the loops begin to insure that the second loop does not
immediately stop.

Figure 2-8. Initializing a Shared Variable Properly

B. Functional Global Variables
You can use uninitialized shift registers in For Loops or While Loops to
hold data as long as the VI never goes out of memory. The shift register
holds the last state of the shift register. Place a While Loop within a subVI
and use the shift registers to store data that can be read from or written to.
Using this technique is similar to using a global variable. This method is
often called a functional global variable. The advantage to this method over
a global variable is that you can control access to the data in the shift
register. The general form of a functional global variable includes an
uninitialized shift register with a single iteration For or While Loop, as
shown in Figure 2-9.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-12 ni.com

Figure 2-9. Functional Global Variable Format

A functional global variable usually has an action input parameter that
specifies which task the VI performs. The VI uses an uninitialized shift
register in a While Loop to hold the result of the operation.

Figure 2-10 shows a simple functional global variable with set and get
functionality.

Figure 2-10. Functional Global Variable with Set and Get Functionality

In this example, data passes into the VI and the shift register stores the data
if you configure the enumerated data type to Set. Data is retrieved from the
shift register if the enumerated data type is configured to Get.

Although you can use functional global variables to implement simple
global variables, as shown in the previous example, they are especially

1 Uninitialized Shift Register

1

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-13 LabVIEW Development Course Manual

useful when implementing more complex data structures, such as a stack or
a queue buffer. You also can use functional global variables to protect
access to global resources, such as files, instruments, and data acquisition
devices, that you cannot represent with a global variable.

Note A functional global variable is a subVI that is not reentrant. This means that when
the subVI is called from multiple locations, the same copy of the subVI is used.
Therefore, only one call to the subVI can occur at a time.

Using Functional Global Variables for Timing
One powerful application of functional global variables is to perform timing
in your VI. Many VIs that perform measurement and automation require
some form of timing. Often an instrument or hardware device needs time to
initialize, and you must build explicit timing into your VI to take into
account the physical time required to initialize a system. You can create a
functional global variable that measures the elapsed time between each time
the VI is called, as shown in Figure 2-11.

Figure 2-11. Elapsed Time Functional Global Variable

The Elapsed Time case gets the current date and time in seconds and
subtracts it from the time that is stored in the shift register. The Reset Time
case initializes the functional global variable with a known time value.

The Elapsed Time Express VI implements the same functionality as this
functional global variable. The benefit of using the functional global
variable is that you can customize the implementation easily, such as adding
a pause option.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-14 ni.com

Exercise 2-1 Variables VI

Goal
Use variables to write to and read from a control

Scenario
You have a LabVIEW Project that implements a temperature weather
station. The project acquires a temperature every half a second, analyzes
each temperature to determine if the temperature is too high or too low, then
alerts the user if there is a danger of a heat stroke or freeze. The program
logs the data if a warning occurs.

Two front panel controls determine the setpoints: the temperature upper
limit and the temperature lower limit. However, nothing prevents the user
from setting a lower limit that is higher than the upper limit.

Your goal is to use variables to set the lower limit equal to the upper limit if
the user sets a lower limit that is higher than the upper limit.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-15 LabVIEW Development Course Manual

Design
The VIs in this project have already been written. Your only task is to
modify the VIs so that the lower limit is set equal to the upper limit when
necessary.

State Definitions
The following table describes the states in the state machine.

Changing the value of the lower temperature limit control should happen
after the user has entered the value but before the value determines the
warning level. Therefore, make the modifications to the VI in the
Acquisition or Analysis state, or place a new state between the two.

Before determining which option to use, take a closer look at the content of
the Acquisition and Analysis states:

❑ Open the Weather Station project located in the
C:\Exercises\LabVIEW Basics II\Variables directory.

❑ Open Weather Station UI.vi.

❑ Review the contents of the Acquisition and Analysis states, which
correspond to the Acquisition and Analysis cases of the Case structure.

State Description Next State

Acquisition Set time to zero, acquire
data from the temperature
sensor, and read front panel
controls

Analysis

Analysis Determine warning level Data Log if a warning
occurs; Time Check if no
warning occurs

Data Log Log the data in a
tab-delimited ASCII file

Time Check

Time Check Check whether time is
greater than or equal to
.5 seconds

Acquisition if time has
elapsed; Time Check if
time has not elapsed

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-16 ni.com

Design Options
You have three different design options for modifying this project.

Option Description Benefits/Drawbacks

1 Insert a Case structure in
the Acquisition state to
reset the controls before a
local variable writes the
values to the cluster.

Poor design: the acquisition
state has another task added,
rather than focusing only on
acquisition.

2 Insert a new state in the
state machine that checks
the controls and resets them
if necessary.

Ability to control when the
state occurs.

3 Modify the Determine
Warnings subVI to reset the
controls.

Easy to implement because
functionality is already
partially in place. However, if
current functionality is used,
one set of data always is lost
when resetting the lower limit
control.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-17 LabVIEW Development Course Manual

This exercise implements Option 2 as a solution.

New State Definitions for Option 2
The following table describes the new state definitions you implement in the
implementation section.

State Description Next State

Acquisition Acquire data from the
temperature sensor on
channel AI0 and read front
panel controls

Range Check

Range
Check

Read front panel controls
and set the lower limit
equal to the upper limit if
upper limit less than the
lower limit

Analysis

Analysis Determine warning level Data Log if a warning
occurs; Time Check if
no warning occurs

Data Log Log the data in a
tab-delimited ASCII file

Time Check

Time Check Check whether time is
greater than or equal to
.5 seconds

Acquisition if time has
elapsed; Time Check if
time has not elapsed

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-18 ni.com

Implementation
1. If the Weather Station.lvproj is not already open, open it from the

C:\Exercises\LabVIEW Basics II\Variables directory.

Note If you do not have a data acquisition device and a DAQ Signal Accessory
available, use the files located in the C:\Exercises\LabVIEW Basics II\
No Hardware Required\Variables directory instead.

2. Add the Range Check state to the state machine.

❑ From the Project Explorer window, open the Weather Station
States.ctl by double-clicking the listing. This is the type-defined
enumerated control that defines the states for the state machine.

❑ Right-click the control and select Edit Items from the shortcut
menu.

❑ Insert an item and modify to match Table 2-1. Be careful not to add
an empty listing.

❑ Save and close the control.

❑ If the Weather Station UI.vi is not open, open it by
double-clicking the listing in the Project Explorer window.

❑ Open the block diagram.

❑ Right-click the state machine Case structure and select Add Case
for Every Value from the shortcut menu. Because the enumerated
control has a new value, a new case appears in the Case structure.

3. Read the upper and lower limit controls in the Range Check state,
instead of the Acquisition state.

Table 2-1. States Enumerated Control

Item Digital Display

Acquisition 0

Range Check 1

Analysis 2

Data Log 3

Time Check 4

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-19 LabVIEW Development Course Manual

Figure 2-12. Completed Acquisition State

❑ Select the Acquisition case in the state machine Case structure.

❑ Inside the Acquisition case, change the Next State enumerated
constant to Range Check.

❑ Make a copy of the Next State enumerated constant by pressing
<Ctrl> and dragging a copy outside of the While loop.

❑ Move the Upper Limit and Lower Limit numeric controls outside of
the While loop.

❑ Resize the Bundle by Name function to one element, as shown in
Figure 2-12.

❑ Select the Range Check case in the state machine Case structure.

❑ Move the Upper Limit and Lower Limit numeric controls and the
Next State enumerated constant into the Range Check state.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-20 ni.com

4. Set the Range Check state to transition to the Analysis state.

❑ In the Range Check case, wire the Next State enumerated constant
to the Next State output tunnel.

❑ Change the Next State enumerated constant to Analysis.

5. If the Upper Limit is less than the Lower Limit, use a local variable to
write the Upper Limit value to the Lower Limit control.

Figure 2-13. Completed Range Check State—True

❑ Place a Less? function in the Range Check state.

❑ Place a Case structure to the right of the Less? function.

❑ Wire the Upper Limit and Lower Limit terminals to the Less?
function and the Case structure as shown in Figure 2-13.

❑ Right-click the Lower Limit terminal and select Create»Local
Variable from the shortcut menu.

❑ Move the local variable inside the True case of the Case structure.

❑ Place a Bundle By Name function to the right of the Case structure.

❑ Wire the Temperature Data cluster to the input cluster terminal of
the Bundle By Name function.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-21 LabVIEW Development Course Manual

❑ Expand the Bundle By Name function to two elements.

❑ Select T Upper Limit in the first element and T Lower Limit in the
second element.

❑ Place a False constant in the Case structure.

❑ Wire the case as shown in Figure 2-13.

6. If the Upper Limit is equal to or greater than the Lower Limit, pass the
values of the controls to the temperature cluster.

Figure 2-14. Completed Range Check State—False

❑ Switch to the False case of the interior Case structure.

❑ Wire the input Upper Limit tunnel to the output Upper Limit tunnel.

❑ Wire the input Lower Limit tunnel to the output Lower Limit tunnel.

7. Save the VI.

8. Save the Project.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-22 ni.com

Testing
1. Run the VI.

❑ Name the log file when prompted.

❑ Enter a value in the Upper Limit control that is less than the value in
the Lower Limit control. Does the VI behave as expected?

2. Stop the VI when you are finished.

3. Close the VI and the project.

End of Exercise 2-1

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-23 LabVIEW Development Course Manual

C. Race Conditions
A race condition is a situation where the timing of events or the scheduling
of tasks may unintentionally affect an output or data value. Race conditions
are a common problem for programs that execute multiple tasks in parallel
and share data between them. Consider the following example in
Figures 2-15 and 2-16.

Figure 2-15. Race Condition Example: Loop 1

Figure 2-16. Race Condition Example: Loop 2

The two loops both increment a shared variable during each iteration. If you
run this program, the expected result after pressing the Stop button is that
the Total Count is equal to the sum of Count 1 and Count 2. If you run the
program for a short period of time, you generally see the expected result.
However, if you run the program for a longer period of time, the Total
Count is less than the sum of Count 1 and Count 2, because this program
contains a race condition.

On a single processor computer, actions in a multi-tasking program like this
one actually happen sequentially, but LabVIEW and the operating system
rapidly switch tasks so that the tasks effectively execute at the same time.
The race condition in this example occurs when the switch from one task to
the other occurs at a certain time. Notice that both of the loops performs the
following operations:

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-24 ni.com

• Read the shared variable.

• Increment the value read.

• Write the incremented value to the shared variable.

Now consider what happens if the loop operations happen to be scheduled
in the following order:

1. Loop 1 reads the shared variable.

2. Loop 2 reads the shared variable.

3. Loop 1 increments the value it read.

4. Loop 2 increments the value it read.

5. Loop 1 writes the incremented value to the shared variable.

6. Loop 2 writes the incremented value to the shared variable.

In this example, both loops write the same value to the variable, and the
increment of the first loop is effectively overwritten by Loop 2. This
generates a race condition, which can cause serious problems if you intend
the program to calculate an exact count.

In this particular example, there are few instructions between when the
shared variable is read and when it is written. Therefore, the VI is less likely
to switch between the loops at the wrong time. This explains why this VI
runs fine for short periods and only looses a few counts for longer periods.

Race conditions are difficult to identify and debug, because the outcome
depends upon the order in which the operating system executes scheduled
tasks and the timing of external events. The way tasks interact with each
other and the operating system, as well as the arbitrary timing of external
events, make this order essentially random. Often, code with a race
condition can return the same result thousands of times in testing, but still
can return a different result, which can appear when the code is in use.

The best way to avoid race conditions is by using the following techniques:

• Controlling and limiting shared resources.

• Identifying and protecting critical sections within your code.

• Specifying execution order.

Controlling and Limiting Shared Resources
Race conditions are most common when two tasks have both read and write
access to a resource, as is the case in the above example. A resource is any
entity that is shared between the processes. When dealing with race
conditions the most common shared resources are data storage, such as

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-25 LabVIEW Development Course Manual

variables. Other examples of resources include files and references to
hardware resources.

Allowing a resource to be altered from multiple locations often introduces
the possibility for a race condition. Therefore, an ideal way to avoid race
conditions is to minimize shared resources and the number of writers to the
remaining shared resources. In general, it is not harmful to have multiple
readers or monitors for a shared resource. However, try to use only one
writer or controller for a shared resource. Most race conditions only occur
when a resource has multiple writers.

In the previous example, you can reduce the dependency upon shared
resources by having each loop maintain its count locally. Then, share the
final counts after pressing the Stop button. This involves only a single read
and a single write to a shared resource and eliminates the possibility of a
race condition. If all shared resources have only a single writer or controller,
and the program has a well sequenced instruction order, then race conditions
do not occur.

Protecting Critical Sections
A critical section of code is code that may behave inconsistently if some
shared resource is altered while it is running. When you use multi-tasking
programs, one task may interrupt another task as it is running. In nearly all
modern operating systems, this happens constantly. Normally, this does not
have any effect upon running code, however, when the interrupting task
alters a shared resource that the interrupted task assumes is constant then a
race condition occurs.

Figures 2-15 and 2-16 have sections of their code highlighted in red. These
sections are critical code sections. If one of the loops interrupts the other
loop while it is executing the code in its critical section, then a race
condition can occur. One way to eliminate race conditions is to identify and
protect the critical sections in your code. There are many techniques for
protecting critical sections. Two of the most effective are Functional Global
Variables and Semaphores.

Functional Global Variables
One way to protect critical sections is to place them in SubVIs. You only
can call a non-reentrant SubVI from one location at a time. Therefore,
placing critical code in a SubVI keeps the code from being interrupted by
other processes calling the SubVI. Using the functional global architecture
to protect critical sections is particularly effective, as shift registers can
replace less protected storage methods like globals or single process shared
variables. Functional globals also encourage the creation of
multi-functional SubVIs that handle all tasks associated with a particular
resource.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-26 ni.com

After you identify each section of critical code in your program, group the
sections by the resource they access, and create one functional global for
each resource. Critical sections performing different operations each can
become a command for the functional global, and you can group critical
sections that perform the same operation into one command, thereby
re-using code.

You can use functional globals to protect the program in Figure 2-15 and
Figure 2-16. Simply replace the shared variables with a functional global
variable and place the code to increment the counter within the variable as
shown in Figures 2-17, 2-18, and 2-19 show a solution to the race condition
using a Functional Global Variable.

Figure 2-17. Using Functional Globals to Protect the Critical Section in Loop 1

Figure 2-18. Using Functional Globals to Protect the Critical Section in Loop 2

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-27 LabVIEW Development Course Manual

Figure 2-19. Functional Global Used to Eliminate the Race Condition

Semaphores
Semaphores are synchronization mechanisms specifically designed to
protect resources and critical sections of code. You can prevent critical
sections of code from interrupting each other by enclosing each between
Acquire and Release Semaphore VIs. By default, a semaphore only allows
one task to acquire it at a time. Therefore, after one of the tasks enters a
critical section, the other tasks cannot enter their critical sections until the
first task completes. When done properly, this eliminates the possibility of
a race condition.

You can use semaphores to protect the critical sections of the program in
Figures 2-15 and 2-16. A named semaphore allows you to share the
semaphore between VIs. You must open the semaphore in each VI, then
acquire it just before the critical section and release it after the critical
section. Figures 2-20 and 2-21 show a solution to the race condition using
semaphores.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-28 ni.com

Figure 2-20. Protecting the Critical Section with a Semaphore in Loop 1

Figure 2-21. Protecting the Critical Section with a Semaphore in Loop 2

Specifying Execution Order
Code in which dataflow is not properly used to control the execution order
can cause some race conditions. When a data dependency is not established,
LabVIEW can schedule tasks in any order, which creates the possibility for
race conditions if the tasks depend upon each other. Consider the example
in Figure 2-22.

Figure 2-22. Simple Race Condition

The code in this example has four possible outcomes, depending upon the
order in which operations execute.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-29 LabVIEW Development Course Manual

Outcome 1: Value = (Value*5)+2
1. Terminal reads Value.

2. Value*5 is stored in Value.

3. Local variable reads Value*5.

4. (Value*5)+2 is stored in Value.

Outcome 2: Value = (Value+2)*5
1. Local variable reads Value.

2. Value+2 is stored in Value.

3. Terminal reads Value+2.

4. (Value+2)*5 is stored in Value.

Outcome 3: Value = Value*5
1. Terminal reads Value.

2. Local variable reads Value.

3. Value+2 is stored in Value.

4. Value*5 is stored in Value.

Outcome 4: Value = Value+2
1. Terminal reads Value.

2. Local variable reads Value.

3. Value*5 is stored in Value.

4. Value+2 is stored in Value.

Although this code is considered a race condition, the code generally
behaves less randomly than the first race condition example. This is because
LabVIEW usually assign a consistent order to the operations. However,
avoid situations such as this because the order and the behavior of the
program is not guaranteed. For example, the order could change when
running the program under different conditions or when upgrading the
program to a newer version of LabVIEW. Fortunately, race conditions of
this nature are easily remedied by controlling the dataflow.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-30 ni.com

Exercise 2-2 Concept: Bank VI

Goal
Eliminate a race condition.

Description
You must identify and fix a problem with the server software in a bank. The
bank server handles requests from many sources and must process the
requests quickly. In order to increase its efficiency, the server uses two
parallel loops: one to handle deposits to the account and another to handle
withdrawals. The problem with the server is that some deposit or
withdrawal requests are lost, thereby resulting in incorrect balances.

Testing
1. Open Bank.VI in the C:\Exercises\LabVIEW Basics II\Bank

directory.

2. Run the VI.

3. Perform a deposit, a withdrawal and a simultaneous transaction to
familiarize yourself with the program.

4. Set the Deposit Amount to 20 and the Withdrawal Amount to 10.

5. Open the block diagram of the Bank VI while it is still running.

6. Arrange the block diagram of the Bank VI so that you can see it while
operating the user interface.

7. Enable execution highlighting on the block diagram by pressing
Executive Highlighting.

8. Click the Simultaneous Transactions button and watch the code as it
executes. The balance should increase by 10.
Notice that either the deposit or the withdrawal is lost, causing the
balance to increase by 20 or decrease by 10.

9. Stop the VI.

You tracked the problem down to a race condition in a section of a code
handling deposits and withdrawals for a single account. Although you can
see the issue with execution highlighting enabled, during regular operation,
the issue would occur sporadically.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-31 LabVIEW Development Course Manual

Remove the race condition by protecting the critical section of code using a
semaphore. In the VI, the critical sections of code are those enclosed by a
Sequence structure.

Maintenance
1. Save the VI as Bank with Semaphores.vi in the C:\Exercises\

LabVIEW Basics II\Bank directory.

2. Use semaphores to protect the critical sections of code, as shown in
Figure 2-23.

Figure 2-23. Bank with Semaphore

❑ Place a Create Semaphore VI to the left of the While Loops.

❑ Wire the Create Semaphore VI as shown in Figure 2-23.

❑ Place an Acquire Semaphore VI in the Deposit Handler loop to the
left of the Sequence structure.

❑ Place a second Acquire Semaphore VI in the Withdrawal Handler
loop to the left of the Sequence structure.

❑ Wire the Acquire Semaphore VIs as shown in Figure 2-23.

❑ Place a Release Semaphore VI in the Deposit Handler loop to the
right of the Sequence structure.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-32 ni.com

❑ Place a second Release Semaphore VI in the Withdrawal Handler
loop to the right of the Sequence structure.

❑ Wire the Release Semaphore VIs as shown in Figure 2-23.

❑ Place a Destroy Semaphore VI to the right of the While Loops.

❑ Wire the Destroy Semaphore VI as shown in Figure 2-23. Notice
that the Destroy Semaphore VI requires only the reference to the
semaphore.

3. Save the VI.

4. Repeat the steps detailed in the Testing section to test the modification
to this VI.

5. Close the VI when you are finished.

End of Exercise 2-2

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-33 LabVIEW Development Course Manual

D. Synchronizing Data Transfer
Variables are very useful in LabVIEW for passing data between parallel
processes. Notifiers and queues are methods for passing data between
parallel processes that has advantages over using variables because of the
ability to synchronize the transfer of data.

Variables
For parallel loops to communicate, you must use some form of globally
available shared data. Using a global variable breaks the LabVIEW
dataflow paradigm, allows for race conditions, and incurs more overhead
than passing the data by wire.

The example shown in Figure 2-24 is a less effective implementation of a
master/slave design pattern. This example uses a variable, which causes two
problems—there is no timing between the master and the slave, and the
variable can cause race conditions. The master cannot signal the slave that
data is available, so the slave loop must continually poll the variable to
determine if the data changes.

Figure 2-24. Master/Slave Architecture Using Global Variables

Notifiers
A more effective implementation of the master/slave design pattern uses
notifiers to synchronize data transfer. A notifier sends data along with a
notification that the data is available. Using a notifier to pass data from the
master to the slave removes any issues with race conditions. Using notifiers
also provides a synchronization advantage because the master and slave are
timed when data is available, providing for an elegant implementation of the

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-34 ni.com

master/slave design pattern. Figure 2-25 shows the master/slave design
pattern using notifiers.

Figure 2-25. Master/Slave Design Pattern Using Notifiers

The notifier is created before the loops begin using the Obtain Notifier
function. The master loop uses the Send Notification function to notify the
slave loop through the Wait on Notification function. After the VI has
finished using the notifiers, use the Release Notifier function.

The following benefits result from using notifiers in the master/slave design
pattern:

• Both loops are synchronized to the master loop. The slave loop only
executes when the master loop sends a notification.

• You can use notifiers to create globally available data. Thus, you can
send data with a notification. For example, in Figure 2-25, the Send
Notification function sends the string instruction.

• Using notifiers creates efficient code. You must not use polling to
determine when data is available from the master loop.

However, using notifiers can have drawbacks. A notifier does not buffer the
data. If the master loop sends another piece of data before the slave loop(s)
reads the first piece of data , that data is overwritten and lost.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-35 LabVIEW Development Course Manual

Queues
Queues are similar to notifiers, except that a queue can store multiple pieces
of data. By default, queues work in a FIFO (first in, first out) manner.
Therefore, the first piece of data inserted into the queue is the first piece of
data that is removed from the queue. Use a queue when you want all data
placed in the queue to be processed. Use a notifier if you only want to
process the current data.

When using the producer/consumer design pattern, queues pass data and
synchronize the loops.

Figure 2-26. Producer/Consumer Design Pattern Using Queues

The queue is created before the loops begin using the Obtain Queue
function. The producer loop uses the Enqueue Element function to add data
to the queue. The consumer loop removes data from the queue using the
Dequeue Element function. The consumer loop does not execute until data
is available in the queue. After the VI has finished using the queues, use the
Release Queue function. When the queue releases, the Dequeue Element
function generates an error, effectively stopping the consumer loop.
Therefore, you do not need a variable to share the Stop between the
two loops.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-36 ni.com

The following benefits result from using notifiers in the master/slave design
pattern:

• Both loops are synchronized to the producer loop. The consumer loop
only executes when data is available in the queue.

• You can use queues to create globally available data that is queued,
removing the possibility of losing the data in the queue when new data
is added to the queue.

• Using queues creates efficient code. You must not use polling to
determine when data is available from the producer loop.

Queues are also useful for holding state requests in a state machine. In the
implementation of a state machine that you have learned, if two states are
requested simultaneously, you might lose one of the state requests. A queue
holds the second state request and execute it when the first has finished.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-37 LabVIEW Development Course Manual

Exercise 2-3 Project: Queue Data

Goal
Create a VI that uses the producer/consumer design pattern and queues to
pass data between the loops.

Scenario
You are given a LabVIEW project that implements a Temperature Weather
Station. Throughout this course, you modify this project to measure Wind
Speed and determine if a High Wind Warning occurs. Create a producer
loop that acquires the temperature and wind speed data at 50 kHz. Transfer
the data to the consumer loop using queues. The consumer loop contains the
state machine from the original temperature weather station.

Design
Figure 2-27 shows an example of a producer/consumer design pattern
without functional elements. In this exercise, place the state machine from
the temperature weather station within the No Error case of the consumer
loop. Place the code for acquisition of the temperature and wind speed
within the producer loop.

Figure 2-27. Example of the Producer/Consumer Design Pattern

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-38 ni.com

Refer to Figure 2-28 for the Weather Station flowchart. In this exercise, you
complete the following blocks: Initialize Resources, Send 1/2 Second of
Temp & Weather Data, and Receive 1/2 Second of Temp & Weather Data.

Figure 2-28. Weather Station Flowchart

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-39 LabVIEW Development Course Manual

Implementation
1. Open Weather Station.proj in the C:\Exercises\LabVIEW

Basics II\Course Project directory.

Note If you do not have a data acquisition device and a DAQ Signal Accessory,
alternate instructions are given where necessary.

2. Open Weather Station UI.vi from the Project Explorer window.

Create Initialization SubVI
3. Switch to the block diagram.

Figure 2-29. Create the Initialization SubVI and Consumer Loop

4. Select everything to the left of the state machine, except the Beginning
State enumerated constant, and select Edit»Create SubVI.

5. Save the subVI as Initialize Weather Station.vi in the
C:\Exercises\LabVIEW Basics II\Course Project\
Supporting Files directory. You modify this VI later.

6. Return to the block diagram of the Weather Station UI VI.

Apply Producer/Consumer Design Pattern
7. Remove the elapsed time programming for the state machine.

❑ Delete the shift register and Boolean constant connected to the
Elapsed Time Express VI.

❑ Remove the Boolean constant in the Time Check state and the
Acquisition state that are no longer wired to anything.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-40 ni.com

❑ Delete the Boolean output tunnel from the Case structure.

❑ Delete the Elapsed Time Express VI.

❑ Press <Ctrl-B> to delete all broken wires.

8. Change the label of the cluster control to Weather Data.

9. Reduce the size of the state machine as much as possible. An example
appears in Figure 2-30. This step allows you to see as much of the block
diagram as possible without scrolling the screen. However, it is not
important to functionality, therefore, skip this step if short on time.

10. Place a Case structure around the While Loop, leaving the new subVI
and the Beginning State enumerated constant outside of the Case
structure.

11. Place a While Loop from the Structures category around the Case
structure and the Beginning State enumerated constant, leaving the new
subVI outside the While Loop, as shown in Figure 2-29.

The outer While Loop is the consumer loop of the producer/consumer
design pattern. In the next steps, you create the producer loop.

12. Scroll the block diagram so that there is empty space above the
consumer loop.

13. Place a While Loop from the Structures category above the consumer
loop. This is the producer loop.

14. Acquire temperature and wind data at 50 kHz for 5000 samples in the
producer loop. If you have a data acquisition board and a DAQ Signal
Accessory, follow the instructions in the Hardware section of this step;
otherwise follow the instructions in the No Hardware section.

Hardware

❑ Place a DAQ Assistant in the producer loop.

❑ Select Analog Input»Voltage.

❑ Select ai0 and ai1 by holding the <Shift> while you are selecting.

❑ Click the Finish button.

❑ While Voltage0 is selected, select the Temperature scale under the
Custom Scaling pull-down menu.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-41 LabVIEW Development Course Manual

If there is no Temperature scale available complete the following
steps:

– Under the Custom Scaling pull-down menu, select Create
New, then select Linear.

– Name the scale Temperature.

– Click the Finish button.

– In Scaling Parameters, enter a Slope of 100.

– In Units, leave the Pre-Scaled Units as Volts and enter
Celsius in Scaled Units.

– Click the OK button.

❑ Set a minimum of 0 and a maximum of 50 for the Celsius Signal
Input Range.

❑ On the Task Timing tab, enter 5000 in the Samples to Read input,
and 50K in the Rate (Hz) input.

❑ Select Voltage1 to set the settings for the wind speed channel.

❑ Set the Signal Input Range to a Max of 1 and a Min of -1 Volts.

❑ Click the OK button.

❑ Expand the DAQ Assistant to show the error in and error out
terminals.

❑ Skip to step 15.

No Hardware

❑ From the Project Explorer window, add Weather
Simulator.vi from the C:\Exercises\LabVIEW
Basics II\Course Project\Supporting Files directory to
the project.

❑ Place a copy of the Weather Simulator VI in the producer loop. This
VI simulates the action of acquiring the temperature and wind data.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-42 ni.com

Fi
gu

re
 2

-3
0.

 C
re

at
e

th
e

Pr
od

uc
er

 L
oo

p
an

d
Qu

eu
e

th
e

Da
ta

15. Queue the data produced in the producer loop to send to the consumer
loop.

16. Place an Obtain Queue function to the left of the producer loop.

❑ [Hardware] Right-click the data output terminal of the DAQ
Assistant and select Create»Graph Indicator from the shortcut
menu.
[No Hardware] Right-click the data output terminal of the Weather
Simulator VI and select Create»Graph Indicator from the shortcut
menu.

❑ Right-click the Waveform Graph terminal and select Change to
Control from the shortcut menu.

❑ Rename the control Weather Data.

❑ Move the Weather Data terminal to the left of the Obtain Queue
function.

❑ Right-click the Weather Data terminal and select Hide Control from
the shortcut menu to hide the control on the front panel.

❑ Wire Weather Data to the element data type input of the Obtain
Queue function.

❑ Place an Enqueue Element function inside the producer loop.

❑ Wire the Enqueue Element function to the Obtain Queue function,
as shown in Figure 2-30.

❑ Place a Release Queue function to the right of the producer loop.

❑ Wire the Release Queue function to the Enqueue Element function
and wire the error clusters with shift registers, as shown in
Figure 2-30.

17. Dequeue the data from the producer loop inside the consumer loop.

❑ Place a Dequeue Element function inside the consumer loop above
the Beginning State enumerated constant.

❑ Wire the Dequeue Element function in the consumer loop as shown
in Figure 2-30.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-44 ni.com

Fi
gu

re
 2

-3
1.

 S
to

p
th

e
Lo

op
s

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-45 LabVIEW Development Course Manual

18. Use the Stop button or an error to stop the producer loop.

❑ Place an Or function in the producer loop.

❑ Move the Stop control from the Time Check state of the state
machine to the producer loop.

❑ Place an Unbundle by Name function in the producer loop.

❑ Wire the stop condition of the producer loop as shown in
Figure 2-31.

19. Use an error to stop the consumer loop. When the Queue is released, any
queue functions still in use produce an error.

❑ Move the loop conditional terminal for the outer While Loop next to
the Dequeue Element function.

❑ Confirm that the Loop Condition is set to Stop if True.

❑ Wire the Error Out terminal from the Dequeue Element function to
the Loop Condition terminal.

❑ Wire the error out terminal of the Dequeue Element function to the
case selector terminal of the outer Case structure, as shown in
Figure 2-31. The Case structure has an Error and a No Error case
once the error cluster is wired to the case selector.

❑ Switch to the No Error case.

❑ Verify that the state machine code is in the No Error case. If it is not,
right-click the Case structure, and select Make This Case No Error
from the shortcut menu.

❑ Switch to the Error case. It should be empty.

❑ Wire the file refnum and error cluster through the Error case.

20. Merge the error clusters and report any error at the end of execution.

❑ Disconnect the wire connecting the Close File function and the
Simple Error Handler VI.

❑ Place a Merge Errors VI to the right of the Close File function.

❑ Wire the Merge Errors VI and the Simple Error Handler as shown in
Figure 2-31.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-46 ni.com

Figure 2-32. Front Panel of the Initialize Weather Station VI

Figure 2-33. Block Diagram of the Initialize Weather Station VI

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-47 LabVIEW Development Course Manual

In the remainder of this exercise, modify the Initialize Weather Station VI.
Add Wind Speed, Wind Upper Limit, and Time to the Weather Data cluster
and execute the subVI only if no error occurs.

21. Open the Initialize Weather Station VI.

22. Place an Error In control on the front panel.

23. Switch to the block diagram.

24. Execute block diagram only if no error occurs.

❑ Enclose everything except the error terminals in a Case structure.

❑ Wire the Error In terminal to the case selector terminal of the Case
structure.

❑ Verify that the block diagram code is in the No Error case. If it is not,
right-click the Case structure and select Make This Case No Error
from the shortcut menu.

❑ Wire the error in cluster from the case selector terminal to the error
in terminal of the Open/Create/Replace File function.

❑ Switch to the Error case. Wire the error cluster through the case, to
the error out terminal.

25. Update the data cluster to include the elements necessary for the revision
to the Weather Station: Wind Speed, Wind Upper Limit, and Time.

❑ Switch to the No Error case.

❑ Make three copies of the Temperature constant.

❑ Name the first copy Wind Speed.

❑ Name the second copy Wind Upper Limit.

❑ Name the third copy Time.

❑ Delete the wire connecting Warning to the Bundle By Name
function.

❑ Expand the Bundle By Name function to include three more
elements.

❑ Wire the constants to the Bundle By Name function in the order
shown in Figure 2-33; the order is important.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-48 ni.com

26. Delete the Data Cluster terminal and create a new terminal for the data.

❑ Right-click the output of the Bundle By Name function and select
Create»Indicator from the shortcut menu.

❑ Rename the indicator Weather Data.

27. Create an icon and a connector pane for the subVI. An example is shown
in Figure 2-34.

Figure 2-34. Icon and Connector Pane for Initialize Weather Station VI

28. Right-click the icon in the upper-right corner of the front panel and
select Edit Icon from the shortcut menu.

❑ Use the Icon Editor window to create a simple icon for the subVI.

❑ Click OK when you have finished.

❑ Right-click the icon and select Show Connector from the shortcut
menu.

❑ Right-click the icon and select Disconnect All Terminals from the
shortcut menu.

❑ Right-click the connector pane and select Patterns from the shortcut
menu, then choose the pattern shown in Figure 2-34. This is the
recommended connector pane.

❑ Wire the connector pane as shown in Figure 2-34.

❑ Right-click the connector pane and select Show Icon from the
shortcut menu when you are finished.

29. Save and close the VI.

30. Switch to the block diagram of the Weather Station UI VI.

31. Right-click the Initialize Weather Station VI and select Relink to
SubVI from the shortcut menu.

Icon and Connections Connector Pane

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-50 ni.com

Fi
gu

re
 2

-3
5.

 S
ha

re
 E

rr
or

s
Be

tw
ee

n
Pr

od
uc

er
 a

nd
 C

on
su

m
er

 L
oo

p

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-51 LabVIEW Development Course Manual

32. Wire the error out terminal from the Obtain Queue function to the
error in terminal of the Initialize Weather Station VI.

33. Your final block diagram should look similar to the one shown in
Figure 2-35. Verify that you have completed all the steps.

Your Run button is still broken at this point, because the project is
incomplete. You complete the rest of this project in later exercises.

End of Exercise 2-3

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-52 ni.com

Exercise 2-4 Optional: Global Data Project

Goal
Create a project containing multiple VIs that share data using a single
process shared variable.

Scenario
Create a VI that generates a sine wave. Create a second VI that displays the
sine wave, and allows the user to modify the time between each acquisition
of the sine wave data. Use one stop button to stop both VIs.

Design
Two VIs and two pieces of global data are necessary for the following
scenario:

• First shared variable: Stop (Boolean data type)

• Second shared variable: Data (Numeric data type)

• First VI: generate sine, write sine to Data shared variable, read Stop
shared variable to stop loop

• Second VI: read Data shared variable, display on chart, write Stop
button to Stop shared variable

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-53 LabVIEW Development Course Manual

Implementation
1. Open a blank project.

2. Save the project as Global Data.lvproj in the C:\Exercises\
LabVIEW Basics II\Global Data directory.

3. Create the Stop shared variable.

❑ Switch to the Project Explorer window.

❑ Right-click My Computer and select New»Variable from the
shortcut menu.

❑ Give the new variable the following properties:

– Name: Stop

– Data Type: Boolean

– Variable Type: Single-process

❑ Click OK to close the Shared Variable Properties dialog box.
Notice that a new library is created in the Project Explorer window
to hold the variable.

4. Save the library.

❑ Right-click the library and select Save from the shortcut menu.

❑ Save the library as Global Data.lvlib in the C:/Exercises/
LabVIEW Basics II/Global Data directory.

5. Create the Data shared variable.

❑ Switch to the Project Explorer window.

❑ Right-click Global Data.lvlib and select New»Variable from the
shortcut menu.

❑ Give the new variable the following properties:

– Name: Data

– Data Type: Double

– Variable Type: Single-process

❑ Click OK to close the Shared Variable Properties dialog box.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-54 ni.com

Generate Data VI
1. Open a blank VI.

2. Save the VI as Generate Data.vi in the C:/Exercises/LabVIEW
Basics II/Global Data directory.

3. Place a Numeric Indicator on the front panel.

4. Name the Numeric Indicator Data.

5. Switch to the block diagram of the VI.

6. Build the block diagram shown in Figure 2-36. No implementation
instructions are given. Labels are shown to assist you.

Figure 2-36. Generate Data Block Diagram w/o Variables

7. Save the VI.

8. Write the data generated to the Data shared variable.

❑ Select the Data shared variable from the Project Explorer window
and drag it inside the While loop of the Generate Data VI block
diagram.

❑ Right-click the global variable and select Change to Write from the
shortcut menu.

❑ Wire the Sin(x) output of the Sine function to the Data shared
variable.

9. Read the Stop shared variable to stop the While Loop.

❑ Switch to the Project Explorer window.

❑ Select the Stop shared variable and drag it inside the While Loop of
the Generate Data.vi block diagram.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-55 LabVIEW Development Course Manual

❑ Wire the Stop shared variable to the Loop Condition terminal.

10. Initialize the Stop shared variable.

❑ Switch to the Project Explorer window.

❑ Select the Stop shared variable and drag it to the left of the While
loop of the Generate Data.vi block diagram.

❑ Right-click the Stop shared variable and select Change to Write
from the shortcut menu.

❑ Right-click the input of the Stop shared variable and select Create»
Constant from the shortcut menu to create a False constant.

❑ Use the Operating tool to change the constant to a False if necessary.

11. Use the shared variable error clusters to ensure order of operations.
Refer to Figure 2-37 for assistance wiring this block diagram.

Figure 2-37. Generate Data Block Diagram with Shared Variables

12. Save the VI.

13. Close the block diagram, but leave the front panel open.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-56 ni.com

Read Data VI
1. Open a blank VI.

2. Save the VI as Read Data.vi in the C:/Exercises/LabVIEW
Basics II/Global Data directory.

3. Build the front panel shown in Figure 2-38.

Figure 2-38. Read Data Front Panel

4. Place a Vertical Pointer Slide and rename it Time Delay (ms).

❑ Change the range of the slide by entering 200 in the top value
shown.

❑ Right-click the slide and select Representation»U8 from the
shortcut menu.

❑ Place a Waveform Chart and rename it Data Chart.

❑ Change the x-scale and y-scale ranges and labels of the chart to the
values shown in Figure 2-38.

❑ Place a Stop button and hide the label.

5. Open the block diagram.

6. Build the block diagram shown in Figure 2-39. Labels are shown to
assist you.

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-57 LabVIEW Development Course Manual

Figure 2-39. Read Data Block Diagram w/o Shared Variables

7. Read the data from the Data shared variable and display it on the
waveform chart.

❑ Switch to the Project Explorer window.

❑ Select the Data shared variable and drag it inside the While Loop of
the Read Data VI block diagram.

❑ Wire the output of the Data global variable to the Data Chart
terminal.

8. Write the value of the Stop Boolean to the Stop shared variable.

❑ Switch to the Project Explorer window.

❑ Select the Stop shared variable and drag it inside the While loop of
the Read Data.vi block diagram.

❑ Right-click the Stop shared variable and select Change to Write
from the shortcut menu.

❑ Wire the Stop terminal to the Stop shared variable.

9. Use the shared variable error clusters to ensure order of operations.
Refer to Figure 2-40 for assistance wiring this block diagram.

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-58 ni.com

Figure 2-40. Read Data Block Diagram without Shared Variables

10. Save the VI.

11. Close the block diagram.

12. Save the project.

Testing
1. Run the Generate Data VI.

2. Run the Read Data VI.

3. Modify the value of the Time Delay (ms) control.

The Time Delay (ms) control determines how often the shared variable
is read. What happens if you set the Time Delay to zero? When
accessing global data, you may read the value more than once before it
is updated to a new value, or you may miss a new value altogether,
depending on the value of the Time Delay.

4. Stop and close the VIs and the project when you are finished.

Challenge
Create a functional global variable to handle the Stop data and use it in
Generate Data VI and Read Data VI to share the stop button between the
two VIs.

End of Exercise 2-4

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-59 LabVIEW Development Course Manual

Self-Review: Quiz

1. Use variables in your VI where ever possible.

a. True

b. False

2. Which of the following cannot transfer data?

a. Semaphores

b. Functional global variables

c. Notifiers

d. Queues

3. Which of the following must be used within a project?

a. Local variable

b. Global variable

c. Functional global variable

d. Single process shared variable

4. Which of the following cannot be used to pass data between multiple
VIs?

a. Local variable

b. Global variable

c. Functional global variable

d. Single process shared variable

Lesson 2 Communicating Among Multiple Loops

© National Instruments Corporation 2-61 LabVIEW Development Course Manual

Self-Review: Quiz Answers

1. Use variables in your VI where ever possible.

a. True

b. False

2. Which of the following cannot transfer data?

a. Semaphores

b. Functional global variables

c. Notifiers

d. Queues

3. Which of the following must be used within a project?

a. Local variable

b. Global variable

c. Functional global variable

d. Single process shared variable

4. Which of the following cannot be used to pass data between multiple
VIs?

a. Local variable

b. Global variable

c. Functional global variable

d. Single process shared variable

Lesson 2 Communicating Among Multiple Loops

LabVIEW Development Course Manual 2-62 ni.com

Notes

© National Instruments Corporation 3-1 LabVIEW Development Course Manual

3
Improving an Existing VI

A common problem when you inherit VIs from other developers is that they
might have added features without attention to design, thus making it
progressively more difficult to add features later in the life of the VI. This is
known as software decay. One solution to software decay is to refactor the
software. Refactoring is the process of redesigning software to make it more
readable and maintainable so that the cost of change does not increase over
time. Refactoring changes the internal structure of a VI to make it more
readable and maintainable, without changing its observable behavior.

In this section, you will learn methods to refactor inherited code and
experiment with typical issues that appear in inherited code.

Topics

A. Refactoring Inherited Code

B. Typical Issues

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-2 ni.com

A. Refactoring Inherited Code
Write large and/or long-term software applications with readability in mind
because the cost of reading and modifying the software is likely to outweigh
the cost of executing the software. It costs more for a developer to read and
understand poorly designed code than it does to read code that was created
to be readable. In general, more resources are allocated to reading and
modifying software than to the initial implementation. Therefore VIs that
are easy to read and modify are more valuable than those that are not.

Although seemingly counterintuitive, well-designed software facilitates
rapid development because well-designed software is less prone to decay. If
a system starts to decay, you can spend large amounts of time tracking down
regression failures, which is not productive. Changes also can take longer to
implement because it is harder to understand the system.

Consider the inherited VI shown in Figure 3-1.

Figure 3-1. Inherited VI

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-3 LabVIEW Development Course Manual

You can refactor the code as shown in Figure 3-2.

Figure 3-2. Refactored Inherited Code

The refactored code performs the same function as the inherited code, but
the refactored code is more readable. The inherited code violates many of
the block diagram guidelines you have learned. Through refactoring, you
can redesign a VI that is difficult to read and maintain and make it readable
and maintainable.

When you make a VI easier to understand and maintain, you make it more
valuable because it is easier to add features to or debug the VI. The
refactoring process does not change observable behavior. Changing the way
a VI interacts with clients (users or other VIs) introduces risks that are not
present when you limit changes to those visible only to developers. The
benefit of keeping the two kinds of changes separate is that you can better
manage risks.

Refactoring versus Performance Optimization
Although you can make changes that optimize the performance of a VI, this
is not the same as refactoring. Refactoring specifically changes the internal
structure of a VI to make it easier to read, understand, and maintain.
A performance optimization is not refactoring because the goal of
optimization is not to make the VI easier to understand and modify. In fact,
performance optimization can make VIs more difficult to read and
understand, which might be an acceptable trade-off. Sometimes you must
sacrifice readability for improved performance, however, readability
usually takes priority over speed of performance.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-4 ni.com

When to Refactor
The right time to refactor is when you are adding a feature to a VI or
debugging it. Although you might be tempted to rewrite the VI from scratch,
you should recognize that there is value in a VI that works, even if the block
diagram is not readable. Good candidates for complete rewrites are VIs that
do not work or VIs that satisfy only a small portion of your needs. You also
can rewrite simple VIs that you understand well. Consider what works well
in an existing VI before you decide to refactor. Refactoring is a methodical
process for restructuring a VI that works well but is written in a way that
hinders its readability, scalability, or maintainability.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-5 LabVIEW Development Course Manual

Exercise 3-1 Project: Refactor

Goal
Refactor the Temperature Weather Station to add functionality.

Scenario
Modify the state machine used in the Temperature Weather Station to also
monitor the wind speed and generate a High Wind Warning when
appropriate. Include a header describing the data in the file.

Design

User Interface Inputs and Outputs

Type Name Properties

Numeric Control1

1. This portion is already completed.

Upper Limit1 Double Precision1

Numeric Control1 Lower Limit1 Double Precision1

Waveform Chart1 Temperature History1

Waveform Chart Wind Speed History

Vertical Pointer Slide Wind Upper Limit Double Precision
Visible Digital Display
Range: 0 to 100

String Indicator1 Warning1

Stop Button1 Stop1

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-6 ni.com

External Inputs and Outputs
• Inputs:

– Current temperature retrieved from a sensor attached to AI0 of the
data acquisition board.1
Conversion formula: Voltage × 100 = Celsius1

– Current wind speed retrieved from a wind anemometer attached to
AI1 of the data acquisition board.
Conversion formula: Frequency ÷ 100 = Kilometers per hour (kph)

• Outputs: tab-delimited ASCII file containing current temperature1,
temperature limits1, current wind speed, wind speed upper limit,
warning string1, and time stamp for each warning that occurs. Include
header in the file.

Before: State Transition Diagram
Before adding wind speed measurements to the project, the states used
were: Acquisition, Analysis, Data Log, and Time Check, as shown in
Figure 3-3.

Figure 3-3. State Transition Diagram for the Temperature Weather Station

1. This portion is already completed.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-7 LabVIEW Development Course Manual

After: Flowchart
After adding the wind speed measurement to the project, the architecture
changes to a producer/consumer design pattern, with a state machine
embedded in the consumer loop. The new state machine has the following
states: Analysis, Process UI, Set Warning, Data Log, and Stop.

Figure 3-4. Flowchart for Weather Temperature Station

The necessary modifications include the following:

1. Adding a control to input the upper wind speed limit and a chart to
display the wind speed on the user interface.

2. Including a file header in the initialization area of the VI.

3. Modifying the state machine housed within the producer loop to match
the flowchart shown in Figure 3-4.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-8 ni.com

State Machine Modifications
Make the modifications shown in the following table to refactor the
Temperature Weather Station project to add wind speed functionality.

Acquisition1—the purpose of the old Acquisition1 state has completely
changed and been renamed to the Analysis state, because the data now is
acquired in the producer loop instead of the state machine. Now the state
reads the raw data and converts it to a single Celsius temperature reading
and a single kilometers per hour reading, making Analysis a descriptive
name for this state.

Analysis1—the old Analysis1 state has been renamed to the Set Warning
state, because you must rename the first state so you can choose a more
descriptive name for this state.

Time Check1—the old Time Check1 state has been renamed to the Stop state
because the new state machine must not measure elapsed time. The
producer loop now handles the data acquisition timing.

New State Old State Modifications Necessary

Analysis Acquisition1

1. This portion is already completed.

Remove DAQ Assistant, determine average frequency
and average temperature from queue data, move
controls and indicators to the Process UI state
Next State: Process UI

Process UI none Read front panel controls to Weather Data cluster;
write current values to charts
Next State: Set Warning

Set Warning Analysis1 Replace current Determine Warnings subVI with the
Determine More Warnings subVI configured to
determine both temperature and wind speed warnings
Next State: Data Log or Stop

Data Log Data Log1 Add Wind Speed, Wind Upper Limit and Time to the
tab-delimited file
Next State: Stop

Stop Time Check1 Remove time check functionality and stop the state
machine
Next State: Stop

1. This portion is already completed.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-9 LabVIEW Development Course Manual

Implementation
1. Open Weather Station.proj in the C:/Exercises/LabVIEW

Basics II/Course Project directory.

2. Open Weather Station UI.vi from the Project Explorer window.

Step One: Modify User Interface

Figure 3-5. Weather Station Front Panel

3. Create the Wind Speed History chart.

❑ Place a Waveform Chart on the front panel.

❑ Rename the chart Wind Speed History.

❑ Right-click the chart and select Visible Items»Digital Display from
the shortcut menu.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-10 ni.com

❑ Place a label for the units, kph, after the digital display. Create a free
label by double-clicking a blank space on the front panel.

Tip After the project is complete, experiment with the x- and y-scales of the charts to
set them to an acceptable level.

4. Create the Maximum Safe Wind Speed input.

❑ Place a Vertical Pointer Slide on the front panel.

❑ Right-click the slide and select Properties from the shortcut menu.

❑ In the Appearance tab, change the label to Wind Upper Limit,
hide the label and show the digital display.

❑ In the Data Range tab, set the default value to 50.

❑ In the Scale tab, set the Minimum to 0 and the Maximum to 100.

❑ Click OK.

❑ Create a label describing the control, such as Maximum Safe Wind
Speed (kph).

❑ If time permits, use decorations to visually enclose the control.

5. Save the VI.

Step Two: Modify File Initialization
6. Open the Initialize Weather Station VI from the Project Explorer

window.

7. Write the file to the same folder as the VI. This is a relative path.

❑ Place a Current VI’s Path function to the left of the
Open/Close/Replace function.

❑ Place a Strip Path function to the right of the Current VI’s Path
function. This removes the file name of the VI from the path.

❑ Place a Build Path function to the right of the Strip Path function.
This removes the file name of the VI from the path.

❑ Right-click the name or relative path input terminal of the Build
Path function and select Create»Constant from the shortcut menu.

❑ Enter Weather.txt in the string constant.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-11 LabVIEW Development Course Manual

❑ Wire the new path to the Open/Create/Replace File function as
shown in Figure 3-6.

8. Write a header to the file to describe the contents of the file.

Figure 3-6. Initialize Weather Station Block Diagram

❑ Place a Write to Text File function to the right of the
Open/Close/Replace function.

❑ Delete the output wires from the Open/Close Replace function.

❑ Wire the error cluster and file refnum as shown in Figure 3-6.

❑ Place a Format Into String function above the Write to Text File.

❑ Expand the Format Into String function to have 14 inputs.

❑ Place a Tab constant to the left of the Format Into String function.

❑ Wire the Tab constant to the even numbered inputs, except the last
input.

❑ Place a Carriage Return constant to the right of the last input.

❑ Wire the Carriage Return constant to the last input.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-12 ni.com

❑ Place a String constant to the left of the Format Into String function.

❑ Make six copies of the string constant.

❑ Enter text into the string constants as shown in Figure 3-6 and wire
in the order shown.

❑ Wire the resulting string output terminal of the Format Into String
function to the text input terminal of the Write to Text File function.

9. Document the new block diagram appropriately.

10. Save and close the VI.

Step Three: Modify State Machine
11. Modify the Weather Station States.ctl to reflect the new states

of the state machine.

❑ Double-click the Weather Station States.ctl in the Project
Explorer window.

❑ Right-click the control and select Edit Items from the shortcut
menu.

❑ Modify the list to match the one shown in Table 3-1.

❑ Save and close the Control Editor window when finished.

Table 3-1. Weather Stations States.ctl

Item Digital Display

Analysis 0

Process UI 1

Set Warning 2

Data Log 3

Stop 4

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-13 LabVIEW Development Course Manual

12. Rearrange, add, and delete cases as necessary in the Weather Station UI
VI.

❑ Right-click the Case structure and select Add Case for Every Value
from the shortcut menu.

❑ Use Figure 3-7 through 3-11 to modify the state machine to match.
Right-click the Case structure and use Swap Diagram With Case
and Delete Case from the shortcut menu to simplify this task. The
order of the items in the state machine is not important.

Figure 3-7. Analysis Case

Figure 3-8. Process UI Case

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-14 ni.com

Figure 3-9. Set Warning Case

Figure 3-10. Data Log Case

Figure 3-11. Stop Case

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-15 LabVIEW Development Course Manual

13. Modify the Analysis state.

Figure 3-12. Analysis State—Weather Station UI Block Diagram

❑ Delete the DAQ Assistant.

❑ Move the Upper Limit, Lower Limit and Temperature History
terminal outside of the Case structure. You will transfer these
objects to the Process UI case later.

❑ Press <Ctrl-B> to delete the broken wires.

❑ Change the elements selected in the Bundle by Name function to
Time, Temperature, and Wind Speed in the order shown.

❑ Right-click My Computer in the Project Explorer window and
select Add File from the shortcut menu.

❑ Navigate to Analyze Data.vi in the C:/Exercises/LabVIEW
Basics II/Course Project/Supporting Files directory.

❑ Click the Add File button.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-16 ni.com

❑ Place the Analyze Data VI in the Analysis case.

– One method to do so is to drag the Analyze Data VI from the
Project Explorer window to the block diagram.

– This VI was created for you to save time. This VI determines the
frequency of the sine wave generated by the wind anemometer,
the average temperature reading, and the time the data was
acquired.

❑ Change the Next State enumerated constant to Process UI.

❑ Finish wiring the block diagram as shown in Figure 3-12.

14. Save the VI.

15. Complete the Process UI state.

Figure 3-13. Process UI State—Weather Station UI Block Diagram

❑ Switch to the Process UI case.

❑ Move the Upper Limit, Lower Limit, Wind Upper Limit,
Temperature History, and Wind Speed History terminals into the
Process UI case.

❑ Place a Bundle by Name function in the Process UI case.

❑ Wire the Weather Data cluster to the input cluster terminal of the
Bundle by Name function.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-17 LabVIEW Development Course Manual

❑ Expand the Bundle by Name function to show three elements.

❑ Select T Upper Limit in the first element, T Lower Limit in the
second element, and Wind Upper Limit in the third element.

❑ Place an Unbundle by Name function in the Process UI case.

❑ Wire the Weather Data cluster to the input cluster terminal of the
Unbundle by Name function.

❑ Expand the Unbundle by Name function to show two elements.

❑ Select Temperature in the first element and Wind Speed in the
second element.

❑ From the Project Explorer window, drag a copy of the Weather
Station States.ctl into the Process UI case.

❑ Change the enumerated constant to Set Warning.

❑ Right-click the Boolean tunnel wired to the Or function and select
Create»Constant from the shortcut menu.

❑ Confirm that the constant is set to False. This ensures that the state
machine does not stop at this state.

❑ Finish wiring the block diagram as shown in Figure 3-13. Notice
that when you wire the Temperature History terminal, the data
type changes to match.

16. Save the VI.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-18 ni.com

17. Add the Determine More Warnings VI and the Det Warnings Control to
the Weather Station project.

The Determine More Warnings VI includes the wind warning and uses
a type-defined enumerated control named Det Warnings.ctl.

Figure 3-14. Set Warning State—Weather Station UI Block Diagram

❑ Switch to the Project Explorer window.

❑ Right-click My Computer and select Add File from the shortcut
menu.

❑ Navigate to the C:\Exercises\LabVIEW Basics II\Course
Project\Supporting Files directory.

❑ Select Determine More Warnings.vi and Det Warnings.ctl, and
click Add File. You can add more than one file by holding down
<Ctrl>.

18. Complete the Set Warning state.

❑ Switch to the block diagram of the Weather Station UI VI.

❑ Switch to the Set Warning case.

❑ Right-click the Determine Warnings subVI, and select Replace»All
Palettes»Select a VI from the shortcut menu.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-19 LabVIEW Development Course Manual

❑ Navigate to C:\Exercises\LabVIEW Basics II\Course
Project\Supporting Files directory and select Determine
More Warnings.vi.

❑ Click OK.

❑ Modify the Unbundle by Name function to have five elements with
the following selections: Wind Speed, Temperature, T Upper Limit,
T Lower Limit, and Wind Upper Limit.

❑ Wire as shown in Figure 3-14.

❑ Confirm that the Next State enumerated constant in the False state is
set to Stop and in the True state is set to Data Log.

19. Save the VI.

20. Complete the Data Log state.

Figure 3-15. Data Log State—Weather Station UI Block Diagram

❑ Switch to the Data Log case.

❑ Expand the Format Into String function to have 14 inputs.

❑ Refer to Figure 3-15 to modify the Unbundle by Name function as
shown.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-20 ni.com

❑ Wire the Unbundle by Name function to the Format Into String
function as shown.

❑ Change the Next State enumerated constant to Stop.

21. Save the VI.

22. Complete the Stop state.

Figure 3-16. Stop State—Weather Station UI Block Diagram

❑ Switch to the Stop case.

❑ Wire the Weather Data, File Renum, and Error Cluster through the
case as shown in Figure 3-16.

❑ From the Project Explorer window, drag a copy of the Weather
Station States.ctl into the Stop case.

❑ Select Stop from the enumerated constant.

❑ Right-click the Boolean tunnel wired to the Or function and select
Create»Constant from the shortcut menu.

❑ Confirm that the constant is set to True. This causes the state
machine to stop.

❑ Confirm the wiring as shown in Figure 3-16.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-21 LabVIEW Development Course Manual

23. If you wired everything correctly, all output tunnels of the Case
structure are filled in and the Run arrow is not broken.

❑ If the tunnels are not filled in, go through each case and confirm that
there is a wire attached to every output tunnel for every case.

❑ If the Run arrow is broken, click it to retrieve a list of errors. Correct
any errors that appear.

24. Save the VI.

Testing

Hardware
1. Confirm that a wire connects the sine Function Generator to Analog In

1, and the Frequency Range switch is set to 100Hz – 10 kHz.

2. Run the VI.

3. Modify the current temperature by touching the temperature sensor on
the DAQ Signal Accessory; modify the wind speed by turning the
Frequency Adjust dial.

4. Assuming your current temperature is approximately 25 degrees C and
your wind speed is greater than 1 kph, test the values in the previous
table to be sure your VI works as expected.

5. Click the Stop button to stop the VI.

6. Skip to step 10.

Name Test 1 Test 2 Test 3 Test 4 Test 5 Test 6

Max Temp 50 10 50 10 50 50

Min Temp 0 0 40 0 40 0

Max Wind
Speed

100 100 100 1 1 1

Warning Text No Warning Heatstroke
Warning

Freeze
Warning

Heatstroke
and High

Wind
Warning

Freeze and
High Wind

Warning

High Wind
Warning

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-22 ni.com

No Hardware
7. Run the VI.

8. Test the values in the previous table to be sure your VI works as
expected.

9. When you have finished, click the Stop button to stop the VI.

Challenge
10. Based on your experience running the VI, modify the chart properties to

preferred values. For each chart, right-click and select Properties from
the shortcut menu. Configure the following suggested settings:

❑ Turn off auto-scaling for the x and y scales.

❑ Set Wind Speed range to 0–100.

❑ Set Sample range to 0–50.

11. Run the VI.

12. Stop, close, and save the VI when you are finished testing.

End of Exercise 3-1

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-23 LabVIEW Development Course Manual

B. Typical Issues
When you refactor a VI, manage the risk of introducing bugs by making
small, incremental changes to the VI and testing the VI after each
change. The flowchart shown in Figure 3-17 indicates the process for
refactoring a VI.

Figure 3-17. Refactoring Flowchart

When you refactor to improve the block diagram, make small cosmetic
changes before tackling larger issues. For example, it is easier to find
duplicated code if the block diagram is well organized and the terminals are
well labeled.

There are several issues that can complicate working with an inherited VI.
The following list describes typical problems and the refactoring solutions
to make inherited VIs more readable.

• The block diagram is too disorganized

Improve the readability of a disorganized VI by moving objects within
the block diagram. You also can create subVIs for sections of the VI that
are disorganized. Place comments on areas of a VI that are disorganized
to improve the readability of the VI.

• The block diagram uses incorrect object names and poor icons

Inherited VIs often contain controls and indicators that do not have
meaningful names. For example, the name of Control 1, shown in
Figure 3-18, does not indicate its purpose. Control 2 is the same control,
renamed to make the block diagram more readable and understandable.

Add Features or Use VI

Improve Block Diagram

Test VI

Is VI Acceptable?

Yes

No

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-24 ni.com

Figure 3-18. Naming Controls

VI names and icons also are important for improving the readability of a
VI. For example, the name My Acqu.vi, shown on the left in
Figure 3-19, does not provide any information about the purpose of the
VI. You can give the VI a more meaningful name by saving a copy of the
VI with a new name and replacing all instances of the VI with the
renamed VI. A simpler method is to open all callers of the VI you want
to rename, then save the VI with a new name. When you use this
method, LabVIEW automatically relinks all open callers of the VI to the
new name. Acq Window Temperature.vi reflects a more
meaningful name for the VI.

Figure 3-19. Poorly Named SubVI

The VI icon also should clarify the purpose of the VI. The default icons
used for VI 1 and VI 2 in Figure 3-19 do not represent the purpose of the
VI. You can improve the readability of the VI by providing a meaningful
icon, as shown for VI 3.

By renaming controls and VIs and creating meaningful VI icons, you
can dramatically improve the readability of an inherited VI.

• The block diagram uses unnecessary logic

When you read the block diagram in Figure 3-20, notice that it contains
unnecessary logic. If a portion of the block diagram does not execute,
delete it. Understanding code that executes is difficult, but trying to
understand code that never executes is inefficient and complicates the
block diagram.

1 Poorly Named Control 2 Meaningfully Named Control

1 Poorly Named VI
2 Meaningfully Named VI

3 Meaningful VI Name and VI Icon

1 2

1 32

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-25 LabVIEW Development Course Manual

Figure 3-20. Unnecessary Logic

• The block diagram has duplicated logic

If a VI contains duplicated logic, you always should refactor the VI by
creating a subVI for the duplicated logic. This can improve the
readability and testability of the VI.

• The block diagram does not use dataflow programming

If there are sequence structures and local variables on the block diagram,
the VI probably does not use data flow to determine the programming
flow.

You should replace most sequence structures with the state machine
design pattern. Delete local variables and wire them directly to the
control and indicator. The most acceptable use of local variables is to
make a control an indicator.

• The block diagram has complicated algorithms

Complicated algorithms can make a VI difficult to read. Complicated
algorithms can be more difficult to refactor because there is a higher
probability that the changes introduce errors. When you refactor a
complicated algorithm make minor changes and test the code
frequently. In some cases you can refactor a complicated algorithm by
using built-in LabVIEW functions. For example, the VI in Figure 3-21
checks a user name and password against a database.

Figure 3-21. Complicated Algorithm VI

You could refactor this VI using the built-in functions for searching
strings, as shown in Figure 3-22.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-26 ni.com

Figure 3-22. Refactored VI

• The block diagram is too big

A VI that has a block diagram that is larger than the screen size is
difficult to read. You should refactor the VI to make it smaller. The act
of scrolling complicates reading a block diagram and understanding the
code. Improve a large block diagram by moving objects around.
Another technique to reduce the screen space a block diagram occupies
is to create subVIs for sections of code within the block diagram. If you
cannot reduce the block diagram to fit on the screen, limit the scrolling
to one direction.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-27 LabVIEW Development Course Manual

Exercise 3-2 Concept: Typical Issues

Goal
Improve an existing VI that is poorly designed.

Description
You receive a VI that is used as a subVI in a larger project. You must
improve the VI for readability and user friendliness.

Evaluate the VI
Open the Determine Warnings Bad One.vi located in the
C:/Exercises/LabVIEW Basics II/Determine Warnings
directory. The block diagram of this VI is shown in Figure 3-23. Use the
following list to evaluate the VI. Place a checkmark for all issues that apply.

❑ The block diagram is too disorganized.

❑ The block diagram contains incorrect object names and poor icons.

❑ The block diagram contains unnecessary logic

❑ The block diagram contains duplicated logic

❑ The block diagram does not use dataflow programming

❑ The block diagram contains complicated algorithms

❑ The block diagram is too big

Figure 3-23. Poorly Designed Block Diagram

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-28 ni.com

Improve the VI
Improve the VI in stages. Begin with the first checkmark: The block
diagram is too disorganized.

1. Use the following tips to help you organize the block diagram:

Figure 3-24. Example of a Reorganized Block Diagram

❑ Move all controls to the left of the block diagram.

❑ Move all indicators to the right of the block diagram.

❑ Use the Align Objects and Distribute Objects toolbar buttons to
arrange the controls and indicators.

❑ Rearrange wires so that they do not overlap.

❑ Rearrange wires so that no wires are running from right to left.

❑ Reduce the number of bends in wires.

❑ Do not allow wires to run under objects.

2. After the block diagram is better organized, rename controls and
indicators using names that are more descriptive.

❑ The purpose of this VI is to determine whether the current
temperature and wind speed are at a level requiring a warning to
generate. The VI also lights an LED if a warning occurs.

❑ Suggested input names are Current Temperature, Low Temp,
High Temp, Current Wind Speed, and High Wind Speed.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-29 LabVIEW Development Course Manual

❑ Suggested output names are Warning Text and Warning?.

3. Remove any unnecessary logic from the block diagram.

Figure 3-25 shows an Equal? function followed by a Not function.

Figure 3-25. Unnecessary Logic

You can replace this with a Not Equal? function, completing the same
logic with fewer functions, as shown in Figure 3-26.

Figure 3-26. Unnecessary Logic Simplified

You can reduce unnecessary logic even further by using the Boolean
input of the Select function, as shown in Figure 3-27.

Figure 3-27. Unnecessary Logic Simplified Further

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-30 ni.com

Refer to Figure 3-28 for assistance with the wiring this duplicated
function that occurs near the end of the VI.

❑ Delete the Equal? function.

❑ Delete the input wire to the Not function.

❑ Wire the input of the Not function to the input wire of the Select
function.

❑ Test the edited VI to be sure the functionality has not changed.

Figure 3-28. Example of a Block Diagram with Well-Named Controls and
Unnecessary Logic Removed

4. Save the VI as Determine Warnings Good One.vi.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-31 LabVIEW Development Course Manual

Optional
1. Replace duplicated logic on the block diagram with subVIs. Figure 3-29

shows an example of the algorithm in the VI that is reused. You can
replace this algorithm with a subVI.

Figure 3-29. Repeated Algorithm

❑ Select the repeated algorithm by drawing a selection box around the
objects.

❑ Select Edit»Create SubVI.

❑ Double-click the new subVI to open it.

❑ Edit the new subVI as necessary. Some things to consider: create an
appropriate icon, recreate the connector pane, and rename the
controls and indicators.

❑ Save the subVI.

❑ Close the subVI.

❑ Right-click the subVI icon on the block diagram and select Relink
to SubVI from the shortcut menu.

❑ Delete the duplicated logic in other locations and replace with the
new subVI.

❑ Test the edited VI.

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-32 ni.com

2. Remove unnecessary local variables and wire to the appropriate control
or indicator instead.

Figure 3-30. Example Block Diagram with Duplicated Logic Placed in a SubVI and
Local Variables Removed

3. Save the VI as Determine Warnings Good One.vi.

Challenge: Simplify Algorithm
If you have time remaining in this exercise, try to determine a way to
simplify the algorithm and rewrite the code so that is easier to modify later.

An example solution is shown in Figure 3-31 using a state machine. The
states contained are: Heatstroke, Freeze, High Wind, and Generate Warning.
You can explore this solution Determine Warnings State
Machine.vi located in the C:/Exercises/LabVIEW Basics I/
Determine Warnings directory. This solution also is used in the course
project.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-33 LabVIEW Development Course Manual

Figure 3-31. Example Block Diagram with a Simplified Algorithm that is Readable,
Maintainable, and Scalable

End of Exercise 3-2

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-34 ni.com

Job Aid
Use the following refactoring checklist to help determine if you should
refactor a VI. If you answer yes to any of the items in the checklist, refer to
the guidelines in the When to Refactor section of this lesson to refactor
the VI.

❑ The block diagram is too disorganized.

❑ The block diagram contains incorrect object names and poor icons.

❑ The block diagram contains unnecessary logic.

❑ The block diagram contains duplicated logic.

❑ The block diagram does not use dataflow programming.

❑ The block diagram contains complicated algorithms.

❑ The block diagram is too big.

Lesson 3 Improving an Existing VI

© National Instruments Corporation 3-35 LabVIEW Development Course Manual

Notes

Lesson 3 Improving an Existing VI

LabVIEW Development Course Manual 3-36 ni.com

Notes

© National Instruments Corporation 4-1 LabVIEW Development Course Manual

4
Controlling the User Interface

When writing programs, often you must change the attributes of front panel
objects programmatically. For example, you may want to make an object
invisible until a certain point in the execution of the program. In LabVIEW,
VI Server is used to access the properties and methods of front panel objects.
This lesson explains the VI Server, Property Nodes, control references, and
Invoke Nodes.

Topics

A. VI Server Architecture

B. Property Nodes

C. Control References

D. Invoke Nodes

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-2 ni.com

A. VI Server Architecture
The VI Server is an object-oriented, platform-independent technology that
provides programmatic access to LabVIEW and LabVIEW applications. VI
Server performs many functions; however, this lesson concentrates on using
the VI Server to control front panel objects and edit the properties of a VI
and LabVIEW.To understand how to use VI Server, it is useful to
understand the terminology associated with it.

Object-Oriented Terminology
Object-oriented programming is based on objects. An object is a member of
a class. A class defines what an object is able to do, what operations it can
perform (methods), and what properties it has, such as color, size, and so on.

Objects can have methods and properties. Methods perform an operation,
such as reinitializing the object to its default value. Properties are the
attributes of an object. The properties of an object could be its size, color,
visibility, and so on.

Control Classes
LabVIEW front panel objects inherit properties and methods from a class.
When you create a Stop control, it is an object of the Boolean class and has
properties and methods associated with that class, as shown in Figure 4-1.

Figure 4-1. Boolean Class Example

VI Class
Controls are not the only objects in LabVIEW to belong to a class. Your VI
belongs to the VI Class and has its own properties and methods associated
with it. For instance, you can use VI class methods to abort your VI, to
adjust the position of the front panel, and to get an image of the block
diagram. You can use VI class properties to change the title of your front
panel window, to retrieve the size of the block diagram, and to hide the abort
button.

Array Sub-Class
Example Property: Number of Rows

Stop Object
Visible: Yes
Attach DataSocket: No
Boolean Text: Stop

Boolean Sub-Class
Example Property: Boolean Text

Control Class
Example Property: Visible
Example Method: Attach DataSocket

Boolean

Stop

Array

Control

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-3 LabVIEW Development Course Manual

B. Property Nodes
Property Nodes access the properties of an object. In some applications, you
might want to programmatically modify the appearance of front panel
objects in response to certain inputs. For example, if a user enters an invalid
password, you might want a red LED to start blinking. Another example is
changing the color of a trace on a chart. When data points are above a certain
value, you might want to show a red trace instead of a green one. Property
Nodes allow you to make these modifications programmatically. You also
can use Property Nodes to resize front panel objects, hide parts of the front
panel, add cursors to graphs programmatically, and so on.

Property Nodes in LabVIEW are very powerful and have many uses. This
section describes examples of specific properties that can change the
appearance and function of front panel objects programmatically. Refer to
the LabVIEW Help for more information about Property Nodes.

Creating Property Nodes
When you create a Property Node from a front panel object by right-clicking
the object, selecting Create»Property Node, and selecting a property from
the shortcut menu, LabVIEW creates a Property Node on the block diagram
that is implicitly linked to the front panel object.

If the object has an owned label, the Property Node has the same label. You
can change the label after creating the node. You also can create multiple
Property Nodes for the same object.

Using Property Nodes
When you create a Property Node, it initially has one terminal representing
a property you can modify for the corresponding front panel object. Using
this terminal on the Property Node, you can either set (write) the property
or get (read) the current state of that property.

For example, if you create a Property Node for a digital Numeric control,
it appears on the block diagram with the Visible property selected by
default. A small arrow appears on the right side of that terminal, indicating
that you are reading that property value. You can change the action to write
by right-clicking the terminal and selecting Change To Write from the
shortcut menu. Wiring a Boolean False to the Visible property terminal
causes the numeric control to vanish from the front panel when the Property
Node receives the data. Wiring a Boolean True causes the control to
reappear.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-4 ni.com

Figure 4-2. Using Property Nodes

To get property information, right-click the node and select Change to
Read from the shortcut menu. To set property information, right-click the
node and select Change to Write from the shortcut menu. If the small
direction arrow on the property is on the right, you are getting the property
value. If the small direction arrow on a property is on the left, you are setting
the property value. If the Property Node in Figure 4-2 is set to Read, when
it executes it outputs a Boolean True if the control is visible or a Boolean
False if it is invisible.

Tip Some properties are read-only (such as the Label property) or write only, such as
the Value (Signaling) property.

To add terminals to the node, right-click and select Add Element from the
shortcut menu or use the Positioning tool to resize the node. Then, you can
associate each Property Node terminal with a different property from its
shortcut menu.

Tip Property Nodes execute each terminal in order from top to bottom.

Some properties use clusters. These clusters contain several properties
that you can access using the cluster functions. Writing to these properties
as a group requires the Bundle function and reading from these properties
requires the Unbundle function. To access bundled properties, select All
Elements from the shortcut menu. For example, you can access all the
elements in the Position property by selecting Properties»Position»All
Elements from the shortcut menu.

However, you also can access the elements of the cluster as individual
properties, as shown in Figure 4-3.

Figure 4-3. Properties Using Clusters

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-5 LabVIEW Development Course Manual

Exercise 4-1 Temperature Limit VI

Goal
Use Property Nodes to change the properties of front panel objects
programmatically.

Scenario
Complete a VI that records temperature to a waveform graph. During
execution, the VI performs the following tasks:

• Set the ∆x value of the chart to the sample rate in seconds.

• Clear the waveform chart so it initially contains no data.

• Change the color of a plot if the data exceed a certain value.

• Make an alarm indicator blink if the data exceed a certain value.

Design
This VI is already built. You add the following Property Nodes:

Type Name Property

Waveform Chart Temperature XScale.Multiplier

Waveform Chart Temperature History

Waveform Chart Temperature Active Plot 0» Plot.Color

Boolean Indicator (LED) Over Limit Blinking

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-6 ni.com

Implementation
1. Open Temperature Limit.vi located in the C:\Exercises\

LabVIEW Basics II\Temperature Limit directory. The front
panel is already built for you.

Figure 4-4. Temperature Limit Front Panel

2. Open the block diagram of the VI. A portion has been built for you. An
example of the final block diagram is shown in Figure 4-5.

Figure 4-5. Temperature Limit Block Diagram

3. Modify the VI so that it sets the delta X value of the chart to the sample
rate.

❑ Right-click the Temperature terminal and select Create»Property
Node»X Scale»Offset and Multiplier»Multiplier from the
shortcut menu to create a Property Node.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-7 LabVIEW Development Course Manual

❑ Place the new Property Node to the left of the While Loop.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Divide the Sample Rate by 1000 to determine the X-Scale
Multiplier, as shown in Figure 4-5.

4. Modify the VI to clear old data from the Temperature chart before
starting the temperature acquisition.

Tip To clear a waveform chart from the block diagram, send an empty array of data to
the History Data property.

❑ Resize the Property Node to two terminals.

❑ Select the History Data property in the second node.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Right-click the History Data property and select Create»Constant
from the shortcut menu.

❑ Place a Flat Sequence structure around the code to enforce execution
before the While Loop begins.

❑ Wire the Property Node as shown in Figure 4-5.

5. Modify the VI so that when the VI acquires data, it turns the Data trace
red and the Over Limit LED blinks when the temperature exceeds the
limit value.

❑ Right-click the Temperature terminal and select Create»Property
Node»Active Plot from the shortcut menu to create another
Property Node.

❑ Place the new Property Node in the True case of the Case structure.

❑ Resize the node to two terminals.

❑ Click the second node and select Plot»Plot Color.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Wire a numeric constant with a value of 0 to the Active Plot property
to select the first plot on the Temperature chart.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-8 ni.com

❑ Wire the Red Color Box constant to the Plot Color property to set the
plot color to red when the data rises above the High Limit.

❑ Create a copy of the Property Node by pressing <Ctrl> while
selecting and dragging the Property Node.

Tip Do not use the clipboard (Edit»Copy) to create a copy of the Property Node. This
creates a different type of Property Node that you learn about in the next section.

❑ Place the copy of the Property Node in the False case of the Case
structure, as shown in Figure 4-6.

❑ Wire a numeric constant with a value of 0 to the Active Plot property
to select the first plot on the Temperature chart.

❑ Connect the Green Color Box constant to the Plot Color property to
set the plot color to green when the data is below the High Limit.

Figure 4-6. False Case in the Temperature Limit VI

6. Modify the VI so that when the VI acquires data, the Over Limit LED
blinks when the temperature exceeds the limit value.

❑ Right-click the Over Limit terminal and select Create»Property
Node»Blinking from the shortcut menu.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Wire the Property Node as shown in Figure 4-5.

7. Save the VI.

Testing
1. Run the VI to confirm that it behaves correctly.

2. Close the VI.

End of Exercise 4-1

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-9 LabVIEW Development Course Manual

C. Control References
A Property Node created from the front panel object or block diagram
terminal is an implicitly-linked Property Node. This means that the Property
Node is linked to the front panel object. What if you must place your
Property Nodes in a subVI? Then the objects are no longer located on the
front panel of the VI that contains the Property Nodes. In this case, you need
an explicitly-linked Property Node. You create an explicitly-linked
Property Node by wiring a reference to a generic Property Node.

If you are building a VI that contains several Property Nodes or if you are
accessing the same property for several different controls and indicators,
you can place the Property Node in a subVI and use control references to
access that node. A control reference is a reference to a specific front panel
object.

This lesson shows one way to use control references. Refer to the
Controlling Front Panel Objects topic of the LabVIEW Help for more
information about control references.

Creating a SubVI with Property Nodes
As shown in Figure 4-7, the simplest way to create explicitly-linked
Property Nodes is to complete the following steps:

1. Create your VI.

2. Select the portion of the block diagram that is in the subVI, as shown in
the first part of Figure 4-7.

3. Select Edit»Create SubVI. LabVIEW automatically creates the control
references needed for the subVI.

4. Customize and save the subVI. As you can see in the second part of
Figure 4-7, the subVI uses the default icon and connector pane.

Figure 4-7. Using Edit»Create SubVI to Create Control References

Objects Selected to Create SubVI Edit»Create SubVI used

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-10 ni.com

The subVI created is shown in Figure 4-8. Notice that the front panel
Control Refnum controls have been created and connected to a property
node on the block diagram.

Figure 4-8. Sub VI Created Using Edit»Create SubVI

Note A red star on the Control Reference control designates that the refnum is strictly
typed. Refer to the Strictly Typed and Weakly Typed Control References section of the
Controlling Front Panel Objects topic of the LabVIEW Help for more information about
weakly and strictly typing.

Creating Control References
To create a control reference for a front panel object, right-click the object
or its block diagram terminal and select Create»Reference from the
shortcut menu.

You can wire this control reference to a generic Property Node. You can
pass the control reference to a subVI using a control refnum terminal.

Using Control References
Setting properties with the control reference method is useful for setting the
same property for multiple controls. Some properties apply to all classes of
controls, such as the Disabled property. Some properties are only applicable
to certain control classes, such as the Housing Size property, which only
applies to Dial and Knob controls.

The following example shows how to construct a VI that uses a control
reference on the SubVI to set the Enable/Disable state of a control on the
main VI front panel.

Created SubVI Front Panel Created SubVI Block Diagram

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-11 LabVIEW Development Course Manual

Figure 4-9. Control References

The main VI sends a reference for the digital numeric control to the subVI
along with a value of zero, one, or two from the enumerated control. The
subVI receives the reference by means of the Ctl Refnum on its front panel.
Then, the reference is passed to the Property Node. Because the Property
Node now links to the numeric control in the main VI, the Property Node
can change properties of that control. In this case, the Property Node
manipulates the Enabled/Disabled state.

Notice the appearance of the Property Node in the block diagram. You
cannot select a property in a generic property node until the class is chosen.
The class is chosen by wiring a reference to the property node. This is an
example of an explicitly-linked Property Node. It is not linked to a control
until the VI is running and a reference is passed to the property node. The
advantage of this type of Property Node is its generic nature. Because it has
no explicit link to any one control, it may be reused for many different
controls. This generic Property Node is available on the Functions palette.

1 Main VI 2 SubVI

1 2

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-12 ni.com

Selecting the Control Type
When you place a Control Refnum on the front panel of a subVI, you next
need to specify the VI Server Class of the control. This specifies the type of
control references that the subVI will accept. In the previous example,
Control was selected as the VI Server Class type, as shown in Figure 4-9.
This allows the VI to accept a reference to any type of front panel control.

However, you can specify a more specific class for the refnum to make the
subVI more restrictive. For example, you can select Digital as the class, and
the subVI only can accept references to numeric controls of the class
Digital. Selecting a more generic class for a control refnum allows it to
accept a wider range of objects, but limits the available properties to ones
that apply to all objects which the property node can accept.

To select a specific control class, right-click the control and select Select VI
Server Class»Generic»GObject»Control from the shortcut menu. Then,
select the specific control class you need.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-13 LabVIEW Development Course Manual

Exercise 4-2 Set Plot Names

Goal
Use control references to create a subVI that modifies graph or chart
properties.

Scenario
Create a subVI that allows you to assign a list of plot names to a chart or
graph. The subVI should resize the plot legend as necessary to display all of
the plots.

Design

Inputs and Outputs

Control References
The only class that contains both the Waveform Chart and the Waveform
Graph is the GraphChart class. In order to write a subVI that can accept
references to both charts and graphs you must use a weakly typed control
reference of the GraphChart class. However, this class also contains other
charts and graphs, such as the XY Graph. This subVI, generates an error if
the user wires any type of graph other than a Waveform Chart or a
Waveform Graph. You can determine if the user has wired the correct type
by using the ClassName property to control a Case structure. If the correct
class is wired, use the To More Specific Class function to get a reference to
the appropriate subclass. After you have a reference to a WaveformChart or
a WaveformGraph you can set the properties to modify plot names.

Type Name Default Value

Control Reference to a GraphChart
object.

Graph Reference N/A

1-D Array of Strings Control Plot Names Empty Array

Error Cluster Control Error In No Error

Error Cluster Indicator Error Out No Error

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-14 ni.com

Properties
Graphs and charts do not have a single property to set all of the plot names.
Instead you must use a combination of properties to set each plot name. In
this exercise, use the following properties and methods:

ClassName—This property returns a string indicating the control class of
the object that the property is called on. You can access this property for any
control.

LegAutosize—This property controls whether the Graph Legend
automatically resizes to accomodate the plot names within it. Before
modifying the plot names you should set this property to false. Otherwise,
the legend may resize in such a way that it is separated from the graph or
covers the graph or other controls.

LegPlots—This property controls the number of plots visible on the Graph
Legend. When placing your legend on the front panel, remember to leave
room for the legend to expand when you set this property. The legend
expands downwards.

ActPlot—Properties affecting a plot act upon one plot at a time. This
property controls the active plot. Any time a plot property is set or read it
applies to the active plot. The plots are numbered sequentially as they are
created, starting with zero.

Plot.Name—This property sets the name of the active plot.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-15 LabVIEW Development Course Manual

Implementation
1. Open a blank VI.

2. Save as Set Plot Names.vi in the C:\Exercises\LabVIEW
Basics II\Set Plot Names directory.

3. Build the front panel.

❑ Place a Control Refnum on the front panel.

❑ Name the Control Refnum Graph Reference.

❑ Right-click Graph Reference and choose Select VI Server
Class»Generic»GObject»Control»GraphChart»GraphChart
from the shortcut menu.

❑ Place an Array on the front panel.

❑ Name the array Plot Names.

❑ Place a String Control inside the Plot Names array.

❑ Place an Error In cluster.

❑ Place an Error Out cluster.

❑ Arrange the controls as shown in Figure 4-10.

Figure 4-10. Set Plot Names Front Panel

Tip Because the front panel of this subVI is not displayed to the user, you do not have
to put as much effort into making it visually appealing. You should always organize your
front panels logically. However, you should not spend too much time on panels that the
user does not see.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-16 ni.com

4. Switch to the block diagram.

5. Identify the class of the control reference and generate an error if it has
an invalid class.

Figure 4-11. Default Case

6. On the Functions palette, select the Programming»Application
Control category. Most of the functions you use in this section come
from this palette.

❑ Place a Property Node on the block diagram.

❑ Wire Graph Reference to the reference input of the Property Node.

❑ Select Class Name in the property section of the Property Node.

❑ Place a Case structure on the block diagram as shown in Figure 4-11.

❑ Wire the ClassName output of the Property Node to the case
selector of the Case structure.

❑ Switch to the "False", Default case of the Case structure.

❑ Delete the False text in the case name so that the case name
resembles Figure 4-11.

Note The Default case of the Case structure is selected if the class of the control
reference does not match one of the other cases. In this case, if the default case executes,
then the control reference passed to this subVI is not a Waveform Graph or a Waveform
Chart.

❑ Place an Error Cluster From Error Code VI in the Case structure.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-17 LabVIEW Development Course Manual

❑ Right-click the error code input of the Error Cluster From Error
Code VI and select Create»Constant from the shortcut menu.

❑ Enter 1057 in the constant.

Note Error code 1057 corresponds to the message Object cannot be typecasted
to the specified type. This is the appropriate error to generate if the caller of the
subVI passes a control reference of the wrong class.

❑ Wire the diagram as shown in Figure 4-11.

7. Handle the WaveformGraph references.

Figure 4-12. WaveformGraph Case

❑ Switch to the "True" case of the case structure.

❑ Change the True text in the case name to WaveformGraph so that
the case name resembles Figure 4-12.

❑ Place a To More Specific Class function in the Case structure

❑ Right-click the target class input of the To More Specific Class
function and select Create»Constant from the shortcut menu.

❑ Click the Generic Class constant and select the Generic»GObject»
Control»GraphChart»WaveformGraph»WaveformGraph
class.

❑ Place a Property Node in the Case structure

❑ Wire the specific class reference output of the To More Specific
Class function to the reference input of the Property Node.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-18 ni.com

❑ Click the Property section of the Property Node and select
Legend»Autosize.

❑ Expand the Property Node to display two properties.

❑ Click the second property in the Property Node and select
Legend»Plots Shown.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Right-click the LegAutosize property and select Create»Constant
from the shortcut menu. Ensure that the value of the constant is
False.

❑ Place an Array Size function in the Case structure.

❑ Place a For Loop in the Case structure.

❑ Place a Property Node in the For Loop.

❑ Wire the dup reference output of the first Property Node through
the border of the For Loop to the reference input of the second
Property Node.

❑ Click the Property section of the Property Node and select Active
Plot from the list.

❑ Expand the Property Node to display two properties.

❑ Click the second property in the Property Node and select Plot»Plot
Name from the list.

❑ Right-click the Property Node and select Change All To Write
from the shortcut menu.

❑ Wire the diagram as shown in Figure 4-12. Use shift registers when
wiring the error wires through the For Loop and use Auto Indexing
for the Plot Names wire.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-19 LabVIEW Development Course Manual

8. Handle WaveformGraph references.

Figure 4-13. WaveformChart Case

❑ Right-click the border of the Case structure and select Duplicate
Case from the shortcut menu.

❑ Enter WaveformChart in the case name.

❑ Click the WaveformGraph reference constant and select
Generic»GOjbect»Control»GraphChart»WaveformChart.

Note When you change the class of a control reference, all Property and Invoke Nodes
using the reference become invalid because the properties refer to a class that does not
match the reference. Notice that all of the property names change to black when you
change the class reference and that the run arrow is broken. Leave the broken wires alone,
because the wires reconnect as you reselect the properties.

❑ Click each of the four properties and select the correct property
again. The four properties are Legend»Autosize, Legend»Plots
Shown, Active Plot, and Plot»Plot Name. The resulting diagram
appears as shown in Figure 4-13.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-20 ni.com

9. Build the icon and connector pane for the subVI. Figure 4-14 shows an
example icon and connector pane.

Figure 4-14. Connector Pane Connections for Set Plot Names VI

❑ Switch to the front panel of the VI.

❑ Right-click the VI Icon and select Show Connector from the
shortcut menu.

❑ Right-click the connector pane and select Patterns from the shortcut
menu to choose a pattern.

10. Wire the connector pane.

❑ Right-click the connector pane and select Show Icon from the
shortcut menu.

❑ Right-click the icon and select Edit Icon from the shortcut menu.

❑ Use the tools in the Icon Editor to create an icon.
If you prefer to use a pre-built icon, select Edit»Import Picture
From File and browse to C:\Exercises\LabVIEW Basics
II\Set Plot Names\Set Plot Names Icon.bmp. Select
Edit»Paste.

❑ Close the Icon Editor when you are finished.

11. Save the VI.

Connections Connector Pane

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-21 LabVIEW Development Course Manual

Testing
1. Test the VI using a Waveform Graph.

Figure 4-15. Set Plot Names Test

❑ Create a blank VI.

❑ Place a Waveform Graph on the front panel.

❑ Open the block diagram.

❑ Right-click the Waveform Graph terminal and select
Create»Reference from the shortcut menu.

❑ Drag the icon of the Set Plot Names VI onto the block diagram of
the new VI.

❑ Wire the WaveformGraph reference to the Graph Reference input
terminal of the Set Plot Names VI.

❑ Right-click the Plot Names input of the Set Plot Names VI and
select Create»Control from the shortcut menu. The block diagram
should look something like Figure 4-15.

❑ Switch to the front panel of the new VI.

❑ Enter One and Two as items in the Plot Names array.

❑ Move the Plot Legend to the right of the graph so that you can
expand the legend.

❑ Run the VI. One and Two appear in the legend.

2. Test the VI using a Waveform Chart.

❑ Right-click the Waveform Graph and select Replace»Graph
Indicators»Waveform Chart from the shortcut menu.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-22 ni.com

❑ Add Three as another item in the Plot Names array.

❑ Run the VI. Three appears in the legend of the chart.

3. Test the VI with a XY Graph.

❑ Right-click the Waveform Graph and select Replace»Graph
Indicators»XY Graph from the shortcut menu.

❑ Add Four as another item in the Plot Names array.

❑ Run the VI. A typecasting error occurs.

4. Close the VI. You do not need to save the VI used for testing the Set Plot
Names VI.

End of Exercise 4-2

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-23 LabVIEW Development Course Manual

D. Invoke Nodes
Use Invoke Nodes to access the methods of an object.

Use the Invoke Node to perform actions, or methods, on an application or
VI. Unlike the Property Node, a single Invoke Node executes only a single
method on an application or VI. Select a method by using the Operating tool
to click the method terminal or by right-clicking the white area of the node
and selecting Methods from the shortcut menu. You also can create an
Invoke Node by right-clicking the object, selecting Create»Invoke Node,
and selecting a method from the shortcut menu.

The name of the method is always the first terminal in the list of parameters
in the Invoke Node. If the method returns a value, the method terminal
displays the return value. Otherwise, the method terminal has no value.

The Invoke Node lists the parameters from top to bottom with the name of
the method at the top and the optional parameters, which are dimmed, at the
bottom.

Example Methods
An example of a method common to all controls is the Reinitialize to
Default method. Use this method to reinitialize a control to its default value
at some point in your VI. The VI class has a similar method called
Reinitialize All to Default.

Figure 4-16 is an example of a method associated with the Waveform Graph
class. This method exports the waveform graph image to the clipboard or to
a file.

Figure 4-16. Invoke Node for the Export Image Method

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-24 ni.com

Exercise 4-3 Front Panel Properties VI

Goal
Learn how to affect the attributes of a VI by using Property Nodes and
Invoke Nodes.

Scenario
You can set the appearance properties of a VI statically by using the VI
properties page. However, robust user interfaces often must modify the
appearance of a front panel while the program runs.

You must create a VI that can perform the following tasks on demand:

• Show or hide its Title Bar

• Show or hide its Menu Bar

• Become transparent so that objects behind the VI can be seen

• Move to the center of the screen

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-25 LabVIEW Development Course Manual

Design

Inputs and Outputs

Use the vertical toggle switches because their default mechanical action is
switch when pressed. Use the OK button because its default action is latch
when released.

Properties
Use the following properties and methods on the VI class:

ShowMenuBar—When this property is true, the Menu bar of the VI is
visible.

Figure 4-17. VI Menu Bar

TitleBarVis—When this property is true, the Title bar of the VI is visible.

Figure 4-18. VI Title Bar

RunTransparently—When this property is true, the transparency of the VI
can vary. The default value of this property is FALSE, so you must write a
TRUE to this property before varying the transparency of the VI.

Transparency—This property varies the transparency of the VI. The
property accepts any value between 0 and 100. A value of 0 makes the VI
completely opaque (normal behavior), and a value of 100 makes the VI
completely transparent (invisible). For this exercise, you set the value to 50
when the Make VI Transparent? button is pressed.

Type Name Default Value

Vertical Toggle Switch Show Menu Bar? True (Yes)

Vertical Toggle Switch Show Title Bar? True (Yes)

Vertical Toggle Switch Make VI Transparent? True (Yes)

OK Button Center False

Stop Button Stop False

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-26 ni.com

Methods
Unlike properties, a method has an effect every time you call it. Therefore,
you should only call methods when you want to perform an action. For
example, if you call the Fp.Center method during each iteration of a loop,
the VI is continually centered, thereby preventing the user from moving it.
You can use a Case structure to control calling the method in a given
iteration of a loop. Use the following method on the VI class:

Center—Each time this method is called, the VI moves to the center of the
screen.

Tip Use the Context Help window to view descriptions of each properties and methods.

VI Structure
The VI polls the front panel controls every 50 milliseconds and sets the
value of the properties based on the current value of the controls. A Case
structure controls the execution of the Center method.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-27 LabVIEW Development Course Manual

Implementation
In the following steps, you create the front panel for the VI. An example of
the front panel is shown in Figure 4-19.

Figure 4-19. Front Panel Properties VI Front Panel

1. Open a blank VI.

2. Save the VI as Front Panel Properties.VI in the
C:\Exercises\LabVIEW Basics II\Front Panel
Properties directory.

3. Create the Show Menu Bar? vertical toggle switch.

❑ Place a Vertical Toggle Switch on the front panel.

❑ Name the switch Show Menu Bar?.

❑ Create free labels for the Yes and No states of the switch.

4. Create the Show Title Bar? switch.

❑ Make a copy of the Show Menu Bar? switch.

❑ Rename the switch Show Title Bar?.

❑ Copy the free labels for the Yes and No states from the Show Menu
Bar? switch.

5. Create the Make VI Transparent? switch.

❑ Make a copy of the Show Menu Bar? switch.

❑ Rename the switch Make VI Transparent?.

❑ Copy the free labels for the Yes and No states from the Show Menu
Bar? switch.

6. Create the Center button.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-28 ni.com

❑ Place an OK Button on the front panel

❑ Name the button Center.

❑ Change the Boolean text on the button to Center the VI.

❑ Right-click the button and select Visible Items»Label from the
shortcut menu to hide the label.

7. Create the Stop button.

❑ Place a Stop Button on the front panel.

❑ Right-click the button and select Visible Items»Label from the
shortcut menu to hide the label.

8. Select Edit»Make Current Values Default.

9. Arrange and organize objects on the front panel. Use the align,
distribute, and resize buttons on the toolbar.

10. In the following steps, create the block diagram for the VI. An example
of the block diagram is shown in Figure 4-20.

Figure 4-20. Front Panel Properties Block Diagram

Figure 4-21. False Case for Center Method

11. Place a While Loop from the Structures category around the terminals.

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-29 LabVIEW Development Course Manual

12. Create a reference to the VI.

❑ Place a VI Server Reference on the block diagram to the left of the
While Loop.

❑ Set the VI Server Reference to This VI if it is not already.

Note The This VI reference allows you to access all the methods and properties of the
current VI without having to explicitly open and close a reference.

13. Create a Property Node for the RunTransparently property.

❑ Right-click the This VI reference and select
Create»Property»Front Panel Window»Run VI Transparently
from the shortcut menu to create a Property Node.

❑ Move the Property Node to the right of the This VI reference,
outside of the While Loop.

❑ Right-click the Property Node and select Change All to Write. from
the shortcut menu

❑ Right-click the FP.RunTransparently property and select
Create»Constant from the shortcut menu.

❑ Change the value of the constant to True.

14. Create a Property Node for the ShowMenuBar, TitleBarVis, and
Transparency properties.

❑ Right-click the This VI reference and select Create»Property»
Front Panel Window»Show Menu Bar from the shortcut menu to
create another Property Node.

❑ Expand the Property Node to show three elements.

❑ Click the second item in the Property Node and select Front Panel
Window»Title Bar Visible.

❑ Click the third item in the Property Node and select Front Panel
Window»Transparency.

❑ Right-click the Property Node and select Change All to Write from
the shortcut menu.

❑ Move the Property Node inside the While Loop.

❑ Place a Select function inside the While Loop.

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-30 ni.com

❑ Place two Numeric Constants with values 0 and 50 to the left of the
Select function.

❑ Wire the 0 numeric constant to the f terminal of the Select function.

❑ Wire the 50 numeric constant to the t terminal of the Select function.

❑ Wire the Boolean controls to the appropriate properties, as shown in
Figure 4-20.

15. Create a Invoke Node for the Center method.

❑ Right-click the This VI reference and select Create»Method»
Front Panel»Center from the shortcut menu to create an Invoke
Node.

16. Place a Case structure around the FP.Center Invoke Node.

17. Add a 50 ms wait to the loop.

❑ Place a Wait (ms) function in the While Loop.

❑ Right-click the milliseconds to wait input and select
Create»Constant from the shortcut menu.

❑ Enter 50 in the constant.

18. Set the While Loop to stop when the user clicks the Stop button or when
an error occurs.

❑ Place an Unbundle By Name function in the While Loop.

❑ Place an Or function in the While Loop.

19. Wire the diagram as shown in Figure 4-20 and Figure 4-21. Make sure
to replace the error cluster tunnel with a shift register.

20. Display any errors that may occur to the user.

❑ Place a Simple Error Handler to the right of the While Loop.

❑ Wire the Simple Error Handler to the error cluster output shift
register from the While loop.

21. Save the VI

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-31 LabVIEW Development Course Manual

Testing
1. Switch to the front panel of the VI.

2. Run the VI.

3. Try each of the buttons and observe the results.

End of Exercise 4-3

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-33 LabVIEW Development Course Manual

Self-Review: Quiz

1. For each of the following items, determine whether they operate on a VI
class or a Control class.

• Format and Precision

• Blinking

• Reinitialize to Default Value

• Show Tool Bar

2. You have a ChartGraph control refnum, shown at left, in a subVI. Which
of the following control references could you wire to the control refnum
terminal of the subVI? (multiple answers)

a. Control reference of an XY Graph

b. Control reference of a Numeric Array

c. Control reference of a Waveform Chart

d. Control reference of a Boolean

Lesson 4 Controlling the User Interface

© National Instruments Corporation 4-35 LabVIEW Development Course Manual

Self-Review: Quiz Answers

1. For each of the following items, determine whether they operate on a VI
class or a Control class.

• Format and Precision: Control

• Blinking: Control

• Reinitialize to Default Value: Control

• Show Tool Bar: VI

2. You have a ChartGraph control refnum, shown at left, in a subVI. Which
control references could you wire to the control refnum terminal of the
subVI?

a. Control reference of an XY Graph

b. Control reference of a Numeric Array

c. Control reference of a Waveform Chart

d. Control reference of a Boolean

Lesson 4 Controlling the User Interface

LabVIEW Development Course Manual 4-36 ni.com

Notes

© National Instruments Corporation 5-1 LabVIEW Development Course Manual

5
Advanced File I/O Techniques

Frequently, the decision to separate the production of data and the
consumption of data into separate processes occurs because you must write
the data to file as it is acquired. This lesson explains ASCII, Binary and Test
Data Exchange (TDM) file formats and when each is a good choice for your
application.

Topics

A. File Formats

B. Binary Files

C. TDM Files

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-2 ni.com

A. File Formats
At their lowest level, all files written to your computer’s hard drive are a
series of binary bits. However, many formats for organizing and
representing data in a file are available. In LabVIEW, three of the most
common techniques for storing data are the ASCII file format, direct binary
storage, and the TDM file format. Each of these formats has advantages and
some formats work better for storing certain data types than others.

When to Use Text (ASCII) Files
Use text format files for your data to make it available to other users or
applications, if disk space and file I/O speed are not crucial, if you do not
need to perform random access reads or writes, and if numeric precision is
not important.

Text files are the easiest format to use and to share. Almost any computer
can read from or write to a text file. A variety of text-based programs can
read text-based files.

Store data in text files when you want to access it from another application,
such as a word processing or spreadsheet application. To store data in text
format, use the String functions to convert all data to text strings. Text files
can contain information of different data types.

Text files typically take up more memory than binary and datalog files if the
data is not originally in text form, such as graph or chart data, because the
ASCII representation of data usually is larger than the data itself. For
example, you can store the number –123.4567 in 4 bytes as a
single-precision floating-point number. However, its ASCII representation
takes 9 bytes, one for each character.

In addition, it is difficult to randomly access numeric data in text files.
Although each character in a string takes up exactly 1 byte of space, the
space required to express a number as text typically is not fixed. To find the
ninth number in a text file, LabVIEW must first read and convert the
preceding eight numbers.

You might lose precision if you store numeric data in text files. Computers
store numeric data as binary data, and typically you write numeric data to a
text file in decimal notation. A loss of precision might occur when you write
the data to the text file. Loss of precision is not an issue with binary files.

When to Use Binary Files
Storing binary data, such as an integer, uses a fixed number of bytes on disk.
For example, storing any number from 0 to 4 billion in binary format, such
as 1, 1,000, or 1,000,000, takes up 4 bytes for each number.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-3 LabVIEW Development Course Manual

Use binary files to save numeric data and to access specific numbers from a
file or randomly access numbers from a file. Binary files are machine
readable only, unlike text files, which are human readable. Binary files are
the most compact and fastest format for storing data. You can use multiple
data types in binary files, but it is uncommon.

Binary files are more efficient because they use less disk space and because
you do not need to convert data to and from a text representation when you
store and retrieve data. A binary file can represent 256 values in 1 byte of
disk space. Often, binary files contain a byte-for-byte image of the data as it
was stored in memory, except for cases like extended and complex numeric
values. When the file contains a byte-for-byte image of the data as it was
stored in memory, reading the file is faster because conversion is not
necessary.

Datalog Files
A specific type of binary file, known as a datalog file, is the easiest method
for logging cluster data to file. Datalog files store arrays of clusters in a
binary representation. Datalog files provide efficient storage and random
access, however, the storage format for datalog files is complex, and
therefore they are difficult to access in any environment except LabVIEW.
Furthermore, in order to access the contents of a datalog file, you must know
the contents of the cluster type stored in the file. If you lose the definition of
the cluster, the file becomes very difficult to decode. For this reason, datalog
files are not recommended for sharing data with others or for storing data in
large organizations where you could lose or misplace the cluster definition.

When to Use TDM Files
Test Data Exchange Format (TDM) is a hybrid file format that combines
Binary storage and XML formatted ASCII data. In a TDM file, the raw
numerical data is stored in binary format. This provides the advantages of
binary, such as efficient space usage and fast write times. In addition to this
data, an XML format stores the structure of the data and information about
the data. This allows the information in the file to be easily accessible and
searchable. Typically, the binary data and XML data are separated into
two files, a .tdm file for the XML data and a .tdx file for the binary data.

TDM files are designed for storing test or measurement data, especially
when the data consists of one or more arrays. TDM files are most useful
when storing arrays of simple data types such as numbers, strings, or
Boolean data. TDM files cannot store arrays of clusters directly. If your data
is stored in arrays of clusters, use another file format, such as binary, or
break the cluster up into channels and use the structure of the TDM file to
organize them logically.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-4 ni.com

TDM Files allow you to create a structure for your data. Data within a file
is organized into channels. You also can organize channels into channel
groups. A file can contain multiple channel groups. Well grouped data
simplifies viewing and analysis and can reduce the time required to search
for a particular piece of data.

Use TDM files when you want to store additional information about your
data. For example, you might want to record include the type of test or
measurement, the operator or tester name, serial numbers, UUT numbers for
the device tested, or the time of the test and the conditions under which the
test or measurement was conducted. TDM files each contain a File object
and can contain as many Channel Group and Channel objects as you want.
Each of the objects in a file has properties associated with it, which creates
three levels of properties that you can use to store data. For example, test
conditions are stored at the file level. UUT information is stored at the
channel or channel group level. Storing plenty of information about your
tests or measurements can make analysis easier, and also allows you to
search for specific data sets. Searching for specific files or data sets based
upon stored criteria is important when you gather large amounts of data—
especially when you may need to share the data with others.

Searching for data in a file based upon one or more conditions is a feature
of the TDM data storage format. With most file formats, you must read the
entire file into a program and then programatically search for certain fields
in the file in order to locate a specific set of data. With a TDM file you can
specify a condition when you read data, and the read returns only data that
matches that condition. By using multiple reads and merging their results
together you can construct complex queries for your data. You can use any
property of the TDM File, Channel Group, or Channel as a query condition.
Therefore, enter as many properties as possible when logging TDM files.
These properties simplify locating data.

Like many binary file formats, only programs specifically designed to
recognize and decode them can read TDM files. LabVIEW,
LabWindowsTM/CVITM, and DIAdem, and some other NI software can read
a TDM file. Save your data in TDM format when you want to access your
data with LabVIEW or DIAdem. However, use a more universal format
such as ASCII to access your data using other software.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-5 LabVIEW Development Course Manual

B. Binary Files
Although all file I/O methods eventually create binary files, you can directly
interact with a binary file by using the Binary File functions. The following
are some of the common functions that interact with binary files.

Open/Create/Replace File—This function opens a reference to a new or
existing file for binary files as it does for ASCII Files.

Write Binary File—This function writes binary data to a file. The function
works much like the Write to Text File function, but can accept most data
types.

Read Binary File—This function reads binary data starting at its current
file position. You must specify to the function the data type to read. Use this
function to access a single data element or wire a value to the count input.
This causes the function to return an array of the specified data type.

Get File Size—This function returns the size of the file in bytes. Use this
function in combination with the Read Binary File function when you want
to read all of a binary file. Remember that if you are reading data elements
that are larger than a byte you must adjust the count to read.

Get/Set File Position—These functions get and set the location in the file
where reads and writes occur. Use these functions for Random File Access.

Close File—This function closes an open reference to a file.

Figure 5-1 shows an example that writes an array of doubles to a binary file.
Refer to the Arrays section of this lesson for more information about the
Prepend array or string size? option.

Figure 5-1. Writing a Binary File

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-6 ni.com

Binary Representation
Each LabVIEW data type is represented in a specified way when written to
a binary file. The following discusses the representation of each type and
important issues when dealing with the binary representation of that type.

Tip A bit is a single binary value. Represented by a 1 or a 0, each bit is either on or off.
A byte is a series of 8 bits.

Booleans
LabVIEW represents Boolean values as 8-bit values in a binary file. A value
of all zeroes represents False. Any other value represents True. This divides
files into byte-sized chunks and simplifies reading and processing files. To
efficiently store boolean values, convert a series of Boolean values into an
integer using the Boolean Array To Number function. Figure 5-2 shows two
methods for writing six Boolean values to a binary file.

Figure 5-2. Writing Boolean Values to a Binary File

Table 5-1 displays a binary representation of the file contents resulting from
running the program in Figure 5-2. Notice that Method B is a more efficient
storage method.

Table 5-1. Results of Figure 5-2.

Method A 00000001 00000001 00000000 00000001
00000000 00000001

Method B 00101011

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-7 LabVIEW Development Course Manual

8-bit Integers
Unsigned 8-bit integers (U8s) directly correspond to bytes written to the file.
When you must write values of various types to a binary file, convert each
type into an array of U8s using the Boolean Array To Number, String to
Byte Array, Split Number, and Type Cast functions. Then, you can
concatenate the various arrays of U8s and write the resulting array to a file.
This process is unnecessary when you write a binary file that contains only
one type of data.

Other Integers
Multi-byte integers are broken into separate bytes and are stored in files in
either little-endian or big-endian byte order. Using the Write to Binary File
VI, you can choose whether you store your data in little-endian or
big-endian format.

Little-endian byte order stores the least significant byte first, and the most
significant byte last. Macintosh computers traditionally used little-endian
order and often internally represents data in LabVIEW.

Big-endian order stores the most significant byte first, and the least
significant byte last. Most Windows programs use big-endian when storing
data to files.

Table 5-2. U8 Representation

Binary Value U8 Value

00000000 0

00000001 1

00000010 2

11111111 255

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-8 ni.com

Floating Point Numbers
Floating point numbers are stored as described by the IEEE 754 Standard
for Binary Floating-Point Arithmetic. Single-precision numerics use 32-bits
each and double-precision numerics use 64-bits each. The length of
extended-precision numerics depends upon the operating system.

Strings
Strings are stored as a series of unsigned 8-bit integers, each of which is a
value in the ASCII Character Code Equivalents Table. This means that there
is no difference between writing strings with the Binary File Functions and
writing them with the Text File Functions.

Arrays
Arrays are represented as a sequential list of each of their elements. The
actual representation of each element depends upon the element type. When
you store an array to a file you have the option of preceding the array with
a header. A header contains a 4-byte integer representing the size of each
dimension. Therefore, a 2-dimensional array with a header contains two
integers, followed by the data for the array. Figure 5-3 shows an example of
writing a two dimensional array of 8-bit integers to a file with a header. The
prepend array or string size? terminal of the Write Binary File function
enables the header. Notice that the default value of this terminal is True.
Therefore, headers are added to all binary files by default.

Table 5-3. Integer Representations

U32 Value
Little-endian

Value
Big-endian

Value

0 00000000 00000000
00000000 00000000

00000000 00000000
00000000 00000000

1 00000001 00000000
00000000 00000000

00000000 00000000
00000000 00000001

255 11111111 00000000
00000000 00000000

00000000 00000000
00000000 11111111

65535 11111111 11111111
00000000 00000000

00000000 00000000
11111111 11111111

4,294,967,295 11111111 11111111
11111111 11111111

11111111 11111111
11111111 11111111

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-9 LabVIEW Development Course Manual

Figure 5-3. Writing a 2D Array of Unsigned Integers to a File with a Header

Table 5-4 shows the layout of the file that the code generates in Figure 5-3.
Notice that the headers are represented as 32-bit integers even though the
data is 8-bit integers.

Clusters
Datalog files best represent clusters in binary files. Refer to the Datalog
Files section for more information.

Sequential vs. Random Access
When reading a binary file, there are two methods of accessing data. The
first is to read each item in order, starting at the beginning of a file. This is
called sequential access and works similar to reading an ASCII file. The
second is to access data at an arbitrary point within the file. For example, if
you know that a binary file contains a 1D array of 32-bit integers that was
written with a header and you want to access the tenth item in the array, you
could calculate the offset in bytes of that element in the file and then read
only that element. In this example, the element has an offset of 4 (the
header) + 10 (the array index) * 4 (the number of bytes in an I32) = 44.
Accessing data in this way is known as random access.

Sequential Access
To sequentially access all of the data in a file, you can call the Get File Size
function and use the result to calculate the number of items in the file, based
upon the size of each item and the layout of the file. You can then wire the
number of items to the count terminal of the Read Binary function.
Figure 5-4 shows an example of this method.

Table 5-4. Example Array Representation In Binary File

4 3 1 2 3 4 5 6 7 8 9 10 11 12

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-10 ni.com

Figure 5-4. Sequentially Reading an Entire File

Alternately, you can sequentially access the file one item at a time by
repeatedly calling the Read Binary function with the default count of 1.
Each read operation updates the position within the file so that you read a
new item each time read is called. When using this technique to access data
you can check for the End of File error after calling Read Binary or
calculate the number of reads necessary to reach the end of the file by using
Get File Size.

Random Access
To randomly access a binary file, use the Set Position VI to set the read
offset to the point in the file you want to begin reading. Notice that the offset
is in bytes. Therefore, you must calculate the offset based upon the layout of
the file. In Figure 5-5, the VI returns the array item with the index specified,
assuming that the file was written as a binary array of double precision
numerics with no header, like the one written by the example in Figure 5-1.

Figure 5-5. Randomly Accessing a Binary File

Datalog Files
Datalog files are designed for storing a list of records to a file. Each record
is represented by a cluster, and can contain multiple pieces of data with any
data type. Datalog files are binary files, however, they use a different API
than other binary files. The Datalog VIs allow you to read and write arrays
of clusters to and from Datalog Files.

When you open a Datalog file for either reading or writing you must specify
the record type used by the file. To do this, wire a cluster of the appropriate

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-11 LabVIEW Development Course Manual

type to the Open/Create/Replace Datalog VI. After the file is open, you
program Datalog files like any other binary file. Random access is available,
although offsets are specified in records instead of bytes.

Figure 5-6 shows an example of writing a datalog file. Notice the cluster
both bundles the data and opens the Datalog file.

Figure 5-6. Writing a Datalog File

Figure 5-7 shows an example of randomly accessing a datalog file. Notice
that the Record Definition cluster matches the cluster used to write the file.
If the record type wired to the Open/Create/Replace Datalog does not
match the records in the file being opened, an error occurs.

Figure 5-7. Reading a Datalog File

Instead of using random access, you can read an entire datalog file by wiring
the output of the Get Number of Records function to the count terminal of
the Read Datalog function.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-12 ni.com

Exercise 5-1 Bitmap File Writer VI

Goal
Use Binary File I/O to write a file with a specified format.

Scenario
Write a file storage routine to store image files for an existing
LabVIEW-based drawing pad. The drawing pad VI returns a drawing as a
2D array of Red, Green, and Blue (RGB) values. Save the data as a 24-bit
bitmap file.

Design
You can use binary file I/O to write or read data in any file format, assuming
that you have a specification that tells you the file layout for that format. The
following section describes the format for a 24-bit Windows bitmap file.

24-bit Bitmap File Layout
Bitmaps (.bmp) files are a format for storing image data. Bitmaps come in
multiple varieties, with differences such as the number of bits used to
represent a pixel and the level of image compression used. The easiest type
of bitmap file to understand and create is a 24-bit uncompressed bitmap file.
A 24-bit uncompressed bitmap file has the following format:

BITMAPFILEHEADER—contains information about the file such as the
file type and file size. A subVI calculates the data for this segment. The
subVI returns an array of U8 numerics that you must write to the file.

BITMAPINFOHEADER—contains information about the image such as
the height, width, compression level, and number of bits per pixel. A subVI
calculates the data for this segment. The subVI returns an array of
U8 numerics that you must write to the file.

Table 5-5. 24-Bit Bitmap File Layout

Section Name Size(bytes) Notes

BITMAPFILEHEADER 14 Data is provided.
Write data to the file.

BITMAPINFOHEADER 40 Data is provided.
Write data to the file.

Image Data 3*Number of Pixels Stored in BGR order
Image is inverted.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-13 LabVIEW Development Course Manual

Image Data—for a 24-bit image, three bytes represent each pixel in the
image. The three bytes represent the Red, Green, and Blue values for the
pixel and are stored in reverse order, Blue, Green, and Red. The pixel array
you are given is a 2D array of clusters. Each cluster has a Red, Green, and
Blue value in it.

The rows in the Image Data are also stored from bottom to top, the first pixel
stored is the lower left corner of the image. For this exercise, the pixel array
you are given is already vertically inverted so you can write the pixels in the
order they are given.

Note The data for each row of the file must have a number of bytes that is divisible by
four. You can pad each row with zeroes to bring the number of bytes to a multiple of four.
For this exercise all of the pictures returned from the drawing pad have a width that is a
multiple of four.

Inputs and Outputs
The main VI for this program contains no inputs and outputs. Dialogs
control all user interaction. The Drawing Pad VI displays a dialog that
allows the user to draw a picture. When the user clicks Save, prompt them
to enter a save location by using a File Dialog VI.

Program Flow
1. Call the Drawing Pad VI to attain a picture.

Note The Drawing Pad VI returns the picture as a 2D array of clusters, each containing
Red, Green, and Blue values. The two dimensional array has a width that is a multiple of
four and is inverted in preparation for writing to file.

2. Display a file dialog to the user to to select a location and file name and
open the selected file for writing.

3. Call the BITMAPFILEHEADER VI and pass the dimensions of the
pixel array to it.

4. Write the 1D array of unsigned integers returned by the
BITMAPFILEHEADER VI to the open file.

Note Disable the prepend array or string size option when you call the Write to
Binary File VI, otherwise LabVIEW inserts the array size at the beginning of the data,
which invalidates the file layout.

5. Call the BITMAPINFOHEADER VI and pass the dimensions of the
pixel array to it.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-14 ni.com

6. Write the 1D array of unsigned integers returned by the
BITMAPINFOHEADER VI to the open file.

7. Process each pixel in the array by using a pair of For Loops to remove
the values from the cluster in Blue, Green, Red order and build them into
an array.

Note Use a three dimensional array to store the processed pixel data, as this allow you
to use For Loop auto-indexing and simplify the program. The number of dimensions in
the array is not important, because the File I/O VIs automatically reformats the array to
write to the file.

8. Write the processed pixel array to the open file.

9. Close the file and handle any errors.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-15 LabVIEW Development Course Manual

Implementation
1. Display the drawing pad.

❑ Create a new VI.

❑ Save the VI as Bitmap File Writer.vi in the C:\Exercises\
LabVIEW Basics II\Bitmap File Writer directory.

❑ Open the block diagram.

❑ Place the Drawing Pad VI, located in the C:\Exercises\
LabVIEW Basics II\Bitmap File Writer directory, on the
block diagram.

❑ Right-click the Drawing Pad VI and select SubVI Node Setup from
the shortcut menu.

❑ Check the Show Front Panel when called and Close afterwards if
originally closed boxes.

❑ Click OK to exit the SubVI Node Setup dialog.

Note The SubVI node setup lets you specify how to call a SubVI. Checking the Show
Front Panel when called box instructs the VI to show its front panel, even if the VI
properties would otherwise prevent it from doing so.

❑ Run the VI and observe the drawing pad. Click the Save button to
exit. Currently, the program ends when you hit Save, because you
have not yet implemented the file I/O.

2. Open a new binary file.

❑ Place a File Dialog Express VI on the block diagram.

❑ Click OK to exit the Configure File Dialog dialog. The default
values allow the user to select a single new or existing file.

❑ Configure the File Dialog Express VI to show the selected path,
error out, error in, prompt, pattern label, and pattern (all files)
terminals by expanding the node and then clicking each item to
select a terminal.

❑ Right-click the prompt terminal of the File Dialog Express VI and
select Create»Constant from the shortcut menu.

❑ Enter Select File to Save in the string constant.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-16 ni.com

❑ Right-click the pattern label terminal of the File Dialog Express VI
and select Create»Constant from the shortcut menu.

❑ Enter Bitmap Files in the string constant.

❑ Right-click the pattern(all files) terminal of the File Dialog Express
VI and select Create»Constant from the shortcut menu.

❑ Enter *.bmp in the string constant.

❑ Place an Open/Create/Replace File function on the block diagram.

❑ Right-click the operation input of the Open/Create/Replace File
function and select Create»Constant from the shortcut menu.

❑ Select replace or create as the value of the constant.

❑ Wire the diagram as shown in Figure 5-8.

Figure 5-8. Open Binary File

3. Create bitmap headers.

❑ Place the BITMAPFILEHEADER VI located in the
C:\Exercises\LabVIEW Basics II\Bitmap File Writer
directory on the block diagram.

❑ Place the BITMAPINFOHEADER VI located in the
C:\Exercises\LabVIEW Basics II\Bitmap File Writer
directory on the block diagram.

❑ Place an Array Size function on the block diagram.

❑ Place two Write to Binary File VIs on the block diagram.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-17 LabVIEW Development Course Manual

❑ Right-click the prepend array or string size terminal of each Write
to Binary File VI and select Create»Constant from the shortcut
menu.

❑ Set the constant values to False.

❑ Wire the diagram as shown in Figure 5-9.

Figure 5-9. Write Bitmap Headers

4. Write image data.

❑ Place a For Loop on the block diagram.

❑ Place a second For Loop inside the first For Loop.

❑ Place an Unbundle by Name function in the For Loops.

❑ Place a Build Array function in the For Loops.

❑ Wire the Image Data array through the For Loop borders to the
Unbundle By Name function.

❑ Expand the Unbundle by Name function so that three elements are
shown.

❑ Choose Blue, Green and Red, in order, for the elements.

Note The bitmap file definition specifies that pixels must be stored in Blue, Green, Red
order. Storing the pixels in another order causes the colors in your image to be incorrect.

❑ Place a Write to Binary File VI on the block diagram.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-18 ni.com

❑ Right-click the prepend array or string size input of the Write to
Binary File VI and select Create»Constant from the shortcut
menu. Set the constant value to False.

5. Close file and handle errors.

❑ Place a Close File VI on the block diagram.

❑ Place a Simple Error Handler on the block diagram.

❑ Wire the diagram as shown in Figure 5-10.

6. Save the VI.

Figure 5-10. Complete Block Diagram

Testing
1. Run the VI.

❑ Switch to the VI front panel.

❑ Run the VI.

❑ Draw a picture in the drawing pad.

❑ Click Save.

❑ Select C:\Exercises\LabVIEW Basics II\Bitmap File
Writer\My Image.bmp as the file to save.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-19 LabVIEW Development Course Manual

2. Open the image in an image viewer.

❑ Open the C:\Exercises\LabVIEW Basics II\Bitmap File
Writer directory in Windows Explorer.

❑ Double-click the image to open it in your default image viewer.
Ensure that the image displayed is the picture you created.

3. Close the VI.

End of Exercise 5-1

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-20 ni.com

C. TDM Files
In LabVIEW, you can create TDM Files in two ways. Use the Write to
Measurement File and Read from Measurement File Express VIs or the
Data Storage API VIs.

The Express VIs allow you to quickly save and retrieve data from the TDM
format. Figure 5-11 is the configuration dialog box for the Write to
Measurement File Express VI. Notice that you can choose to create a LVM
or a TDM file type. However, these Express VIs give you little control over
your data grouping and properties and do not allow you to use some of the
features that make TDM files useful, such as searching for data based upon
conditions.

Figure 5-11. Creating a TDM with Write to Measurement File

To gain access to the full capabilities of TDM files, use the Data Storage
API. The Data Storage API is a set of VIs that can write multiple file
formats, however, they write TDM files by default. Figure 5-12 is an
example of a simple program that logs channel properties and numeric data
to a TDM File using the Data Storage API.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-21 LabVIEW Development Course Manual

Figure 5-12. Using the Data Storage API to Write a Simple TDM File

Data Hierarchy
TDM files allow you to organize your data in channel groups and in
channels.

A channel group is a segment of a TDM file that contains properties to store
information as well as one or more channels. You can use channel groups to
organize your data and to store information that applies to multiple
channels.

A channel stores measurement signals or raw data in a TDM file. The signal
is an array of measurement data. Each channel also can have properties that
describe the data. The data stored in the signal is stored as binary data on
disk to conserve disk space and efficiency.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-22 ni.com

Data Storage API
 The following are some of the most commonly used Data Storage VIs:

Open Data Storage—opens a reference to a TDM file. You can hard code
a file path by using the configuration dialog or determine the path at runtime
by using the block diagram terminal.

Figure 5-13. Open Data Storage Dialog Box

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-23 LabVIEW Development Course Manual

Write Data—allows you to create Channels and Channel Groups within
your file. It also allows you to write properties and data for the item you
create. The configuration dialog for this VI allows you to select which
properties have block diagram terminals and specify how the VI behave if
you attempt to store two channels in a file with the same name.

Figure 5-14. Write Data Configuration Dialog Box

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-24 ni.com

Read Data—allows you to search for Channels or Channel Groups based
upon conditions you specify. The configuration dialog for this VI allows you
to specify the conditions for the search, as well as the type of data returned
when the search result is a channel. This VI can return the actual data signal
from a Channel, but in order to access other properties of a Channel or
Channel Group pass the references returned from this VI to the Get
Properties VI. Notice that because a query can have multiple results, this
function returns all of its results, including refnums, in arrays.

Figure 5-15. Read Data Configuration Dialog Box

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-25 LabVIEW Development Course Manual

Set Properties—this VI allows you to set properties on a Channel, Channel
Group, or File. Because the Write Data VI allows you to set the properties
of a Channel or Channel Group, this VI is most often used to set File
properties. The configuration dialog allows you to select the type of object
to set properties for, and the properties to set. You can also use this VI to set
the data signal of a Channel. When setting the signal you can choose
whether to append the new data to existing data or whether to replace the
existing data.

Figure 5-16. Set Properties Configuration Dialog Box

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-26 ni.com

Get Properties—allows you to access the properties of a File, Channel
Group, or Channel. You can combine this VI with the Read Data VI to
search for Channels or Channel Groups and then access properties of the
search results. You also can use this VI to get all the Channel Groups in a
File or all the Channels in a Channel Group. The configuration dialog box
allows you to choose which properties you are interested in.

Figure 5-17. Get Properties Configuration Dialog Box

Close Data Storage—closes a reference to a TDM File. Notice that you
only must close the File reference, any references that you acquire to
Channels and Channel Groups close automatically when you close the File
reference.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-27 LabVIEW Development Course Manual

Merge Queries—allows you to construct complex queries. Because the
Read Data VI allows you to specify only one condition, use this VI and
multiple Read Data VIs to construct queries which have more than one
condition. Refer to the Constructing Queries section for more information.

Delete Data—use this VI to delete a Channel or Channel Group from a file.
Unlike other file formats, you often re-use a single TDM instead of creating
a new file each time a VI runs. When using TDM files in this way, the Delete
Data VI allows you to remove unwanted data from the files. For example,
you might query the file for old data channels, write them to an archive file,
and then delete them from the original file. Delete Data does not search for
data, it requires a reference to the data, therefore, you often use Read Data
to locate data before using Delete Data to remove it.

Constructing Queries
Constructing queries helps read data for viewing or analysis. Perform basic
queries using only the Read Data VI. Figure 5-18 shows a simple query that
graphs the signal data from all Channels in the file with a maximum greater
than or equal to 5.

Figure 5-18. Simple TDM Query

To access properties other than the data signal, use the Get Properties VI
with the result references from Read Data. Notice that because Read Data
returns an array, you must use a For Loop to index it before calling Get
Properties. Rather than displaying the signal data, the example in
Figure 5-19 displays channel properties. The example returns the Name,
Description, Minimum and Maximum of all channels with a Maximum
greater than or equal to 5.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-28 ni.com

Figure 5-19. Accessing Properties of Query Results

When your TDM file contains data groups, you often want to search for
channels only in a particular group. You can do this by using two Read Data
VIs: one to search for the appropriate channel group and a second to search
for channels within that group. Wiring the reference of the Channel Group
to the Read Data VI allows you to constrain the channel search to channels
within that group. The example in Figure 5-20 graphs all channels in the
Temperature Data group with a maximum greater than 76 degrees. This
example assumes only one group with the name Temperature Data exists.
This is a valid assumption unless you checked the Always Create new
channel group/channel option when you wrote the data with the Write
Data VI. If you cannot guarantee that only one Channel Group matches
your query, step through the query results using a For Loop like the example
in Figure 5-19.

Figure 5-20. Query Data from a Channel Group

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-29 LabVIEW Development Course Manual

To construct complex TDM queries, use the Merge Queries VI. This VI
allows you to combine the results of two Read Data VIs. When you use
Merge Queries, you can return results that are in the first query and the
second query or combine the results of both queries. After calling Merge
Queries, you often call Get Properties to access the signals or properties
of the query results.

Grouping Data
Carefully consider the best way to group your data as the data grouping can
have a significant impact on both the execution speed and implementation
complexity of writes and queries. Consider the original format of your data
and how you want to search or view the data when choosing a grouping
scheme.

One grouping technique is to group data by the type of data. For example,
you might put numeric data in one channel group and string data in another,
or you might put time domain data in one group and frequency domain data
in another. This makes it easy to compare the channels in a group, but can
make it difficult to find two channels that are related to each other.
Figure 5-21 shows an example of grouping by the type of data. In this
example, the temperature data is placed in one group and the wind data is
placed in another. Each group contains multiple channels of data. Notice
that when grouping by data type you typically have a fixed number of
groups, two in this case, and a dynamically determined number of channels.
Exercise 5-2 is also an example of grouping by data type.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-30 ni.com

Figure 5-21. Grouping by Data Type

Another grouping technique is to group related data. For example, you
might put all of the data that applies to a single Unit Under Test (UUT) in
one group. Grouping related data allows you to easily locate all of the
related data about a particular subject, but makes it harder to compare
individual pieces of data between subjects. Relational grouping helps
convert cluster-based storage to a TDM format. You can store all of the
information from a given cluster in a channel group, with arrays in the
cluster being channels within the group, and scalar items in the cluster being
properties of the channel group. Figure 5-22 shows an example of grouping
related data. Notice that the input data is an array of clusters, each of which
contains multiple pieces of information about a test. Each test is stored as a
separate Channel Group. Information that applies to the entire test, such as
the Test ID and Test Status, is stored as properties of the Channel Group.
Arrays of data, such as the time data and power spectrum, are stored in
Channels, and information which relates to the arrays of data, such as the
RMS Value and Fundamental Frequency, are stored as properties of the
channels. Notice that when grouping related data, there is typically a fixed
number of channels in a group, but the number of groups is dynamic.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-31 LabVIEW Development Course Manual

Figure 5-22. Grouping Related Data

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-32 ni.com

Exercise 5-2 TDM Logger VI

Goal
Log data to a TDM File.

Scenario
You are given a subVI (Generate Data VI) that generates measurement data
for Units Under Test (UUTs). The UUT measurement data consists of a time
domain waveform and the power spectrum of the waveform.

Create a VI that accepts an arbitrary number of UUTs, identified by serial
numbers, retrieves the measurement data from Generate Data VI, and logs
the UUT data and additional properties to a TDM file.

The TDM File is titled TDM Exercise Data and contains the author,
timestamp, and two channel groups: Time Data and Power Spectrum Data.
Each group contains a channel for each UUT. The serial number of the UUT
names each channel and contains the matching signal data.

Design

Program Flow
1. Read UUT serial numbers.

Read the UUT serial numbers from an array of string controls on the
user interface.

2. Set Time Data chart plots names.

Use the UUT serial number to assign a name to each plot on the Time
Data chart indicator using the Set Plot Names VI (written in
Exercise 3-3).

3. Set Power Spectrum chart plots names.

Use the UUT serial number to assign a name to each plot on the Power
Spectrum chart indicator using the Set Plot Names VI.

4. Determine the number of UUTs.

Use the Array Size function to measure the size of the array used to
indicate the UUT serial numbers. The size of the array indicates the
number of UUTs.

5. Generate test data.

Use the Generate Data VI to generate time and power spectrum data for
each UUT.

6. Create or open a TDM File.

7. Set File Properties.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-33 LabVIEW Development Course Manual

Add the title, time stamp and author properties to the file.

8. Write data and properties to file.

Create a subVI (Write Group VI) that writes the channel group,
properties, and channels to the file. Refer to the Write Group VI section
for details on this subVI.

9. Close the file.

10. Display the data.

Write Group VI
This subVI creates a channel group with a specified name. The channel
group contains channels specified by serial numbers. The channel group is
written to a TDM file.

This subVI is created because two channel groups are required: Time Data
and Power Spectrum Data. Creating a subVI allows you to write the code
once and use it multiple times.

The following table contains the controls and indicators used in the subVI.

TDM File Reference Information
• File Level Information

• Time Stamp—contains the current time.

• Title—contains the string TDM Exercise Data, identifying the
type of test being performed.

• Author—contains the test operator name, acquired through a front
panel control.

• The file contains two channel groups, one for time data and one for
the power spectrum data.

Input/Output Type Name

Generic Refnum Control storage refnum (file)

String Control Group Name

1-D Array of String Controls UUT Serial Numbers

1-D Array of Waveform Controls. Plots

Error In Control Error In

Generic Refnum Indicator storage refnum out

Error Out Indicator Error Out

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-34 ni.com

• Channel Group Level Information

• Name—contains Time Data or Power Spectrum Data. This
identifies the channel group.

• Each channel group should contain a channel for each UUT.

• Channel Level Information

• Name—contains the UUT Serial Number. This allows you to
associate the numeric data with a particular unit.

• Signal—contains an array of floating-point numeric data.

• A number of other properties, such as the signal minimum and
maximum will automatically be calculated and added to the file.

Implementation

1. Open TDM Logger.vi in the C:\Exercises\LabVIEW
Basics II\TDM Logger directory. The front panel is built for you.

2. Switch to the block diagram.

3. Populate the graph legends with the UUT serial numbers.

Figure 5-23. Set TDM Logger Legend Names

❑ Place two copies of the Set Plot Names VI located in
C:\Exercises\LabVIEW Basics II\Set Plot Names
directory.

Note If you did not complete the Set Plot Names exercise, you can use the Set Plot
Names VI located in the C:\Exercises\LabVIEW Basics II\Exercise 2-2
directory.

❑ Right-click the Time Data indicator terminal and select
Create»Reference from the shortcut menu.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-35 LabVIEW Development Course Manual

❑ Right-click the Power Spectrum indicator terminal and select
Create»Reference from the shortcut menu.

❑ Wire the diagram as shown in Figure 5-23.

4. Test the graph legends.

❑ Switch to the front panel of the VI.

❑ Enter one or more serial numbers in the UUT Serial Number array.

❑ Run the VI.
The serial numbers you entered should be displayed in both graph
legends.

Tip Always look for opportunities to test your VIs as you are writing them. Debugging
is much harder if you write the entire VI and then test it.

5. Place a String control on the front panel and label it Test Operator.

6. Generate and display the test data.

Figure 5-24. Generate and Display Test Data

❑ Switch to the block diagram.

❑ Place the Generate Data VI from the C:\Exercises\LabVIEW
Basics II\TDM Logger directory.

❑ Place an Array Size function on the block diagram.

❑ Wire the diagram as shown in Figure 5-24.

❑ Switch to the front panel.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-36 ni.com

❑ Right-click the Time Data graph and select Ignore Attributes from
the shortcut menu.

❑ Right-click the Power Spectrum graph and select Ignore
Attributes from the shortcut menu.

Note You must ignore the attributes of the waveform, otherwise the waveform name
attribute would overwrite the labels you set. This option is only available after you wire
a waveform to the graph.

7. Test the VI. The graphs should display a plot for each serial number you
enter.

8. Open the TDM File.

❑ Place an Open Data Storage VI on the block diagram.

❑ Leave the options at their default settings.

❑ Click OK to exit the Configure Open Data Storage dialog.

9. Set file properties.

Figure 5-25. Set File Properties

❑ Place a Set Properties VI on the block diagram.

❑ Wire the storage refnum(file) output of the Open Data Storage VI
to the storage refnum (channel) input of the Set Properties VI.

Note By default, the Set Properties VI is configured to set channel properties. Wiring
the file refnum to it causes it to adapt so that it sets file properties instead.

❑ Double-click the Set Properties VI to open the configuration dialog.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-37 LabVIEW Development Course Manual

❑ Modify the configuration to match Figure 5-26.

❑ Click OK to close the dialog.

Note The Configure Set Properties dialog lists all of the available properties for the
object you have wired to the Set Properties VI. Each of the properties provided is merely
a container which can be used in any way you see fit. For example, you could choose to
use the Description field to enter the type of test rather than the Title field.

Figure 5-26. Configure Set Properties Dialog Box

❑ Right-click the Title terminal of the Set Properties VI and select
Create»Constant from the shortcut menu. Enter TDM Exercise
Data as the value of the constant.

❑ Place a Get Date/Time In Seconds function on the block diagram.

❑ Wire the diagram as shown in Figure 5-25.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-38 ni.com

Fi
gu

re
 5

-2
7.

 W
rit

e
Da

ta
 C

ha
nn

el
s

w
ith

 R
ep

ea
te

d
Co

de
 S

el
ec

te
d

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-39 LabVIEW Development Course Manual

10. Create the Time Data channel group.

❑ Place a Write Data VI on the block diagram.

❑ Select Channel Group from the Object type pull-down menu of
the Configure Write Data dialog box.

❑ Rearrange the Properties so that the Selected properties contain
Name.

❑ Click OK to close the dialog.

❑ Right-click the Name terminal of the Write Data [Channel group]
VI and select Create»Constant from the shortcut menu.

❑ Enter Time Data in the string constant.

11. Write the Time Data channels.

❑ Place a For Loop on the block diagram.

❑ Place a Write Data VI inside the For Loop.

❑ Check the Always create new channel group/channel box in the
Configure Write Data dialog box.

Note Selecting this property prevents you from overwriting or appending data if you
have more than one channel with the same serial number in a file.

❑ Rearrange the Properties so that the Selected properties contain
Name.

❑ Click the OK button to exit the dialog box.

12. Wire the diagram as shown in Figure 5-27.

13. Create a subVI out of the code to write the channel group and channel
so you can re-use it to write the power spectrum data.

❑ Select the Write Data VI and the For Loop as shown in Figure 5-27.
Do not select the Time Data string constant.

❑ Select Edit»Create SubVI.

❑ Double-click the new subVI to open it.

❑ Save the subVI as C:\Exercises\LabVIEW Basics II\
TDM Logger\Write Group.vi.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-40 ni.com

❑ Open the block diagram of the subVI.

❑ Right-click the right shift register on the For Loop and select
Create»Indicator from the shortcut menu to create an error
indicator.

❑ Right-click the storage refnum (file) output of the Write Data
[Channel Group] VI and select Create»Indicator from the shortcut
menu.

❑ Modify the terminal names and arrange the block diagram as shown
in Figure 5-28.

Figure 5-28. Write Data Block Diagram

❑ Switch to the front panel.

❑ Rename the error out control error in.

Note When you select Edit»Create SubVI, the controls and indicators inherit labels
from the names associated with the wires they link to in the main VI. Therefore, the error
input in this subVI is named error out. However, always name the error cluster control
error in and the error cluster indicator error out.

❑ Arrange the controls logically.

❑ Right-click the VI Icon and select Edit Icon from the shortcut menu.

❑ Double-click the Selection Tool to select the entire icon.

❑ Select Edit»Import Picture From File and browse to
C:\Exercises\LabVIEW Basics II\TDM Logger\
Write Group Icon.bmp.

❑ Select Edit»Paste.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-41 LabVIEW Development Course Manual

❑ Click the 16 Colors Icon.

❑ Click the 256 Colors button under the Copy from section.

❑ Click the B&W Icon.

❑ Click the 256 Colors button under the Copy from section.

❑ Click OK.

❑ Right-click the VI Icon and select Show Connector from the
shortcut menu.

❑ Create the connector pane as shown in Figure 5-29

❑ Save and close the VI.

❑ Right-click the Write Data VI on the block diagram of the TDM
Logger VI and select Relink to SubVI from the shortcut menu.

Figure 5-29. Connector Pane Connections for Write Group VI

Connections Connector Panes

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-42 ni.com

Fi
gu

re
 5

-3
0.

 T
DM

 L
og

ge
r C

om
pl

et
e

Bl
oc

k
Di

ag
ra

m

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-43 LabVIEW Development Course Manual

14. Write the Power Spectrum data.

❑ Place a copy of the Write Group SubVI.

❑ Place a String Constant with the value Power Spectrum.

15. Close the TDM file and handle errors.

❑ Place a Close Data Storage VI on the block diagram.

❑ Place a Simple Error Handler VI on the block diagram.

❑ Wire the diagram as shown in Figure 5-30.

❑ Save the VI.

Testing
1. Run the VI.

❑ Ensure that the default value of the TDM File Path control is
C:\Exercises\LabVIEW Basics II\TDM Logger\
Test Data.TDM.

❑ Enter your name in the Test Operator field.

❑ Enter A001, A002, and A003 in the UUT Serial Numbers control.

❑ Run the VI.

2. Open the data in DIAdem.

Tip NI DIAdem is an interactive tool for mathematical and visual data analysis, and
report generation. This tool is a separate product and is not a part of LabVIEW. If you do
not have access to DIAdem, you can use the Data Viewer VI to confirm that your data
was saved successfully. This VI is an example program that you can locate by searching
for TDM in the LabVIEW Example Finder.

❑ Open National Instruments DIAdem by selecting Start»
Programs»National Instruments»DIAdem 9.1»DIAdem.

❑ Click the Next > button to begin the DIAdem Report Wizard.

❑ Select FILES: My Computer from the Data sources list if it is not
already selected.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-44 ni.com

❑ Under the Select data browser place a checkmark in the checkbox
to select Drives»C:»Exercises»LabVIEW Basics II»TDM
Logger»Test Data.tdm.

❑ Click the Next > button to select the channels to display.

❑ Ensure that Use is set to Yes for all 6 of the channels displayed.

❑ Click the Next > button to select report options.

❑ Click the VIEW button under the Content-based style section.

❑ Click the Finish button.

❑ DIAdem opens your data in the VIEW window. This window allows
you to inspect your data using a variety of tools.

3. Inspect the data.

❑ Right-click within the VIEW window and choose Select properties.
This window allows you to choose which properties to view. All of
the properties from your channel as well as some additional
properties provided by DIAdem are available.

Figure 5-31. TDM Properties

4. Select unit_string under the Properties to be displayed list and click
the < button to remove it.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-45 LabVIEW Development Course Manual

❑ Select Source context from the Properties not for display list and
press the > button to move it to Properties to be displayed. The
Source context displays the group that each channel belongs to.

❑ Select Minimum and Maximum from the Properties not for
display list and press the > button to move them to Properties to be
displayed. These property display the minimum and maximum
value in your channels, they were automatically added to your TDM
file by LabVIEW when you logged the channel.

❑ Select CursorX and CursorY from the Properties not for display
list and press the > button to move them to Properties to be
displayed. These property display the values of the cursor in the
DIAdem data view.

❑ Click OK to exit the Select Properties dialog. The group name,
minimum and maximum values appear for each channel.

Figure 5-32. DIAdem VIEW Window

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-46 ni.com

❑ Right-click one of the graphs in the VIEW window and select
Cursor»Curve. This locks the cursor (crosshair) onto the plots.
Observe that the X and Y values are now filled in for each channel.

❑ Place your mouse over the cursor on the top plot and then click and
drag the cursor to the left and right. Observe the changing values of
the X and Y properties. You can change the plot that the cursor
appears on by clicking in the colored box associated with that plot.

Optional: Generate a Report with DIAdem
5. Select File»Transfer to REPORT. This will transfer the data to the

REPORT view, where you can create a customized report.

❑ Double-click the plot legend to bring up the 2D graphics legend
dialog.

❑ Select Channel name (origin short) from the Labeling with
drop-down menu.

❑ Click OK to exit the dialog.

❑ Resize the graph and the legend so that the legend items are next to
their respective plots.

❑ Right-click Sheet 1 on the bar at the bottom of the screen and select
Delete. Choose OK to delete the worksheet when prompted. You
must delete this empty worksheet so that it does not show up in your
report.

❑ Select File»PDF Export.

❑ Enter C:\Exercises\LabVIEW Basics II\TDM Logger\
Test Data Report.pdf as the path name for the report.

❑ Open the C:\Exercises\LabVIEW Basics II\TDM Logger
directory in Windows Explorer and double-click Test Data
Report to open it.

❑ Close DIAdem. Do not save any changes.

End of Exercise 5-2

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-47 LabVIEW Development Course Manual

Exercise 5-3 TDM Query

Goal
Query a TDM file to access information about a specific channel.

Scenario
Saving data to a file serves no purpose unless you also implement or devise
a way to access the data. Write a reader to access data from the TDM Logger
you implemented in Exercise 5-2. The reader can search for a particular
serial number and return either the time data or power spectrum data for that
particular serial number.

Design

TDM Query Inputs and Outputs

Because the data in the file is grouped by data type, begin by opening the
file and querying for the appropriate channel group. Then, query the channel
group to locate the specified serial number. Display the data and close the
file when the query is complete.

Table 5-6. TDM Query VI Inputs and Outputs

Type Name Properties

File Path Control TDM File Path Default Value =
C:\Exercises\LabVIEW Basics
II\TDM Logger\Test Data.TDM

String Control Serial Number

Combo Box Data Set Item 1 = "Time Data"
Item 2 = "Power Spectrum"

Waveform Graph Indicator Query Result

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-48 ni.com

Implementation
1. Create a blank VI.

2. Save the VI as C:\Exercises\LabVIEW Basics II\TDM Query\
TDM Query.vi.

3. Build the VI front panel.

Figure 5-33. TDM Query Front Panel

❑ Create the TDM File Path control with a default value of
C:\Exercises\LabVIEW Basics II\TDM Logger\
Test Data.TDM.

❑ Create the Serial Number string control.

❑ Create the Query Result waveform graph.

❑ Place a Combo Box control on the front panel. Label the combo box
Data Set.

❑ Right-click the Data Set control and select Edit Items from the
shortcut menu.

❑ Enter Power Spectrum in the Items list.

❑ Click the Insert button.

❑ Enter Time Data in the Items list.

❑ Remove the checkmark from the Allow undefined values at run
time box.

❑ Click OK.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-49 LabVIEW Development Course Manual

❑ Select Time Data from the drop-down menu of the Data Set
control.

❑ Right-click the Data Set control and select Data Operations»Make
Current Value Default from the shortcut menu.

❑ Arrange the front panel as shown in Figure 5-33.

4. Open the TDM file.

❑ Place an Open Data Storage VI on the block diagram.

❑ Select open (read only) from the Overwrite options pull-down
menu.

Tip Opening a file with the open (read only) option increases the speed of reads and
searches in the file. Also, it does not lock the file so that other programs can use it at the
same time.

❑ Click OK to exit the Configure Open Data Storage dialog box.
Leave the default values for the other settings.

❑ Wire the TDM File Path control to the file path input of the Open
Data Storage VI.

5. Query for the correct Channel Group.

❑ Place a Read Data VI on the block diagram.

❑ Select Channel Group from the Object type to read drop-down
menu.

❑ Select Name from the Property to compare drop-down menu. The
dialog box should now resemble Figure 5-34.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-50 ni.com

Figure 5-34. Configure Read Data for Channel Groups

❑ Click OK to exit the dialog box.

❑ Place an Index Array function on the block diagram.

Note The Read Data VI returns an array of Channel Group references because more
than one Channel Group may match the condition. In this case, you know that only one
Channel Group with the given name is present in the file, so you can just use the first item
in the array. If it is possible for your query to return more than one Channel Group, you
should use a For Loop to process each reference.

❑ Wire the diagram as shown in Figure 5-35.

Figure 5-35. Query Channel Groups

6. Query for the requested Channel data.

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-51 LabVIEW Development Course Manual

❑ Place a Read Data VI on the block diagram.

❑ Select Name from the Property to compare drop-down menu.

❑ Click OK to exit the dialog box, leave the default values for the other
settings.

7. Close the file and handle errors.

❑ Place a Close Data Storage VI on the block diagram.

❑ Place a Simple Error Handler VI on the block diagram.

❑ Wire the block diagram as shown in Figure 5-36.

❑ Save the VI.

Figure 5-36. TDM Query Completed Block Diagram

Testing
1. Query for time domain data.

❑ Switch to the VI front panel.

❑ Ensure that the default TDM File Path matches Table 5-6 and the
Data Set is set to Time Data.

❑ Enter A001 in the Serial Number control.

Note A001 was one of the serial numbers you entered when you ran the TDM Logger
VI in Exercise 5-2.

❑ Run the VI. A sine wave should display in the Query Result graph.

❑ Change the Serial Number to A002.

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-52 ni.com

❑ Run the VI. A different sine wave should display.

2. Query for power spectrum data.

❑ Change the Data Set control to Power Spectrum.

❑ Run the VI. Power spectrum data should display in the Query
Result graph.

End of Exercise 5-3

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-53 LabVIEW Development Course Manual

Self-Review: Quiz

1. You must store the results of tests to a file. In the future, you must
efficiently search for the tests which meet specific criteria. Which file
storage format makes it easiest to query the data?

a. Tab-delimited ASCII

b. Custom binary format

c. TDM

d. Datalog

2. You must write a program which saves Portable Network Graphics
(PNG) image files. Which file storage VIs should you use?

a. Storage file VIs

b. Binary file VIs

c. ASCII file VIs

d. Datalog file VIs

3. You must store data that other engineers must analyze with Microsoft
Excel. Which file storage format should you use?

a. Tab-delimited ASCII

b. Custom binary format

c. TDM

d. Datalog

4. Which of the following is a little-endian representation of an unsigned
32-bit integer (U32) with a value of 10?

a. 00001010 00000000 00000000 00000000

b. 00000000 00000000 00000000 00001010

c. 00001010

d. 01010000 00000000 00000000 00000000

5. You can use the Binary File VIs to read ASCII files.

a. True

b. False

6. TDM Files store all properties at the channel or channel group level.

a. True

b. False

Lesson 5 Advanced File I/O Techniques

© National Instruments Corporation 5-55 LabVIEW Development Course Manual

Self-Review: Quiz Answers

1. You must store the results of tests to a file. In the future, you need to
efficiently search for the tests which meet specific criteria. Which file
storage format makes it easiest to query the data?

a. Tab-delimited ASCII

b. Custom binary format

c. TDM

d. Datalog

2. You must write a program which saves Portable Network Graphics
(PNG) image files. Which file storage VIs should you use?

a. Storage file VIs

b. Binary file VIs

c. ASCII file VIs

d. Datalog file VIs

3. You need to store data which other engineers must analyze with
Microsoft Excel. Which file storage format should you use?

a. Tab-delimited ASCII

b. Custom binary format

c. TDM

d. Datalog

4. Which of the following is a little endian representation of an unsigned
32-bit integer (U32) with a value of 10?

a. 00001010 00000000 00000000 00000000

b. 00000000 00000000 00000000 00001010

c. 00001010

d. 01010000 00000000 00000000 00000000

5. You can use the Binary File VIs to read ASCII files.

a. True

b. False

6. TDM Files store all properties at the channel or channel group level.

a. True

b. False

Lesson 5 Advanced File I/O Techniques

LabVIEW Development Course Manual 5-56 ni.com

Notes

© National Instruments Corporation 6-1 LabVIEW Development Course Manual

6
Creating and Distributing Applications

This lesson describes the process of creating a stand-alone application and
installer for your LabVIEW applications.

Topics

A. LabVIEW Features for Project Development

B. Preparing the Application

C. Building the Application and Installer

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-2 ni.com

A. LabVIEW Features for Project Development
LabVIEW provides several features you can use to manage your projects
more efficiently.

VI History
One of the most useful LabVIEW tools for team-oriented development is
the History window. Use the History window in each VI to display the
development history of the VI, including revision numbers. The revision
number starts at zero and increases incrementally every time you save
the VI. Record and track the changes you make to the VI in the History
window as you make them. Select Edit»VI Revision History to display the
History window. You also can print the revision history.

Use the VI Properties Revision History dialog box to set options for the
current VI. Use the Options dialog box to set options for all new VIs.

VI Hierarchy
Saving memory is an important advantages of separating your main
application into subVIs. In addition, the responsiveness of the LabVIEW
editor improves because smaller VIs are easier to handle. Using subVIs
makes the high-level block diagram easy to read, debug, understand, and
maintain.

Therefore, try to keep the block diagram for your top-level VI under 500 KB
in size. In general, keep your subVIs a smaller size. To check the size of a
VI, select File»VI Properties and select Memory Usage from the category
pull-down menu. Typically, you should break a VI into several subVIs if the
block diagram for your VI is too large to fit entirely on the screen.

The VI Hierarchy window displays a graphical representation of all open
LabVIEW projects and targets, as well as the calling hierarchy for all VIs in
memory, including type definitions and global variables. Select View»VI
Hierarchy to display the VI Hierarchy window. Use this window to view
the subVIs and other nodes that make up the VIs in memory and to search
the VI hierarchy.

Use the toolbar at the top of the Hierarchy window to show or hide various
categories of objects used in the hierarchy, such as global variables or
VIs shipped with LabVIEW, as well as whether the hierarchy expands
horizontally or vertically. A VI that contains subVIs has an arrow button on
its bottom border. Click this arrow button to show or hide subVIs. A red
arrow button appears when all subVIs are hidden. A black arrow button
appears when all subVIs are displayed.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-3 LabVIEW Development Course Manual

The Hierarchy window shown in Figure 6-1 contains the hierarchy of the
Weather Station project built in this course. The VIs from the LabVIEW
vi.lib directory are not shown. Right-click a blank area of the window
and select Show All VIs from the shortcut menu to show the entire
hierarchy.

Figure 6-1. VI Hierarchy Window

As you move the cursor over objects in the VI Hierarchy window, LabVIEW
displays the name of each VI in a tip strip. You can use the Positioning tool
to drag a VI from the VI Hierarchy window to the block diagram to use the
VI as a subVI in another VI. You also can select and copy a node or several
nodes to the clipboard and paste them on other block diagrams.
Double-click a VI in the VI Hierarchy window to display the front panel of
that VI.

You also can locate a VI in the hierarchy by typing the name of the node you
want to find anywhere in the window. As you type the text, the search string
appears, displaying the text as you type. LabVIEW highlights the node with
a name that matches the search string. You also can find a node in the
hierarchy by selecting Edit»Find.

1 Redo Layout 4 Include VI Lib

2 Vertical Layout 5 Include Globals

3 Horizontal Layout 6 Include Type Definitions

1 2 3 4 5 6

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-4 ni.com

Use the Hierarchy window as a development tool when planning or
implementing your project. For example, after developing a flowchart of
the VIs required for an application, you can create, from the bottom of
the hierarchy up, each of these VIs so that they have all necessary inputs
and outputs on their front panel and the subVIs call on their block diagrams.
This builds the basic application hierarchy that now appears in the
Hierarchy window. Then, you can start developing each subVI, such as
color-coding their icons, which also is colored in the Hierarchy window to
reflect their status. For example, white icons can represent untouched VIs,
red icons can represent subVIs in development, and blue icons can represent
completed VIs.

Comparing VIs
The LabVIEW Professional Development System includes a utility to
determine the differences between two VIs loaded into the memory. Select
Tools»Compare»Compare VIs to display the Compare VIs dialog box.

From this dialog box, you can select the VIs you want to compare, as well
as the characteristics of the VIs to check. When you compare the VIs, both
VIs display a Differences window that lists all differences between the two
VIs. In this window, you can select various differences and details that you
can circle for clarity.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-5 LabVIEW Development Course Manual

Exercise 6-1 Concept: LabVIEW Project Management Tools

Goal
In this exercise examine some of the built-in LabVIEW features for project
management.

Description
You can use the LabVIEW tools to determine the layout and architecture of
the application. This is important when preparing to modify an application.
Also, you can simplify documenting a developed application by including
the VI Revision History, and the VI Hierarchy.

In this exercise explore some of the features built into LabVIEW for
handling applications.

VI Revision History
1. Open the Weather Station UI VI.

2. Select Edit»VI Revision History to open the History window for
the VI.

3. Click the Reset button to clear the current history. Click Yes to confirm
the deletion of the history and reset the revision number.

4. In the Comment text box of the History window, enter Initial
Application Created and click the Add button. Your comment
appears in the History text box, along with a date and time stamp.
Close the History window.

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-6 ni.com

VI Hierarchy
5. Select View»VI Hierarchy. The applications hierarchy appears.

6. Experiment with expanding and collapsing the hierarchy. Notice that as
you click the small black and red arrows in the hierarchy, they expand or
collapse branches of the hierarchy. You might see some icons with a red
arrow by them, indicating that they call one or more subVIs.

7. Examine the operation of the buttons in the toolbar. Notice how you can
arrange the hierarchy using the Layout buttons or by dragging the icons.
You also can include various application components using the Include
buttons. Use Redo Layout to redraw the window layout to minimize
line crossing and maximize symmetry.

8. Double-click any subVI icon in the hierarchy to display the appropriate
subVI. Close the subVI you selected and close the Hierarchy window.

9. Close the VIs. Do not save any changes.

End of Exercise 6-1

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-7 LabVIEW Development Course Manual

B. Preparing the Application
A stand-alone application allows the user to run your VIs without installing
the LabVIEW development system. Installers are used to distribute the
stand-alone application. Installers can include the LabVIEW Run-Time
Engine, which is necessary for running stand-alone applications. However,
you can also download the LabVIEW Run-Time Engine at ni.com.

To create a professional, stand-alone application with VIs, you must
consider several programming issues.

Outside Code
First, know what outside code your applications uses. For example, do you
call any system or custom DLLs or shared libraries? Are you going to
process command line arguments? These are advanced examples that are
beyond the scope of this course, but you must consider them for the
application.

Path Names
Another issue is the path names you use in the VI. Assume you read data
from a file during the application, and the path to the file is hard-coded on
the block diagram. Once an application is built, the file is embedded in the
executable, changing the path of the file. Being aware of these issues will
help you to build more robust applications in the future.

Quit LabVIEW
Another issue that affects the application you have currently built is that the
top-level VI does not quit LabVIEW or close the front panel when it is
finished executing. To completely quit and close the top-level VI, you must
call the Quit LabVIEW function on the block diagram of the top-level VI.

Providing Online Help in Your LabVIEW Applications
As you put the finishing touches on your application, you should provide
online help to the user. Create descriptions for VIs and their objects, such as
controls and indicators, to describe the purpose of the VI or object and to
give users instructions for using the VI or object.

Use the following functions, located on the Help palette, to
programmatically show or hide the Context Help window and link from
VIs to HTML files or compiled help files:

• Use the Get Help Window Status function to return the status and
position of the Context Help window.

• Use the Control Help Window function to show, hide, or reposition
the Context Help window.

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-8 ni.com

• Use the Control Online Help function to display the table of contents,
jump to a specific point in the file, or close the online help.

• Use the Open URL in Default Browser VI to display a URL or HTML
file in the default Web browser.

C. Building the Application and Installer
Use Build Specifications in LabVIEWto create stand-alone applications and
installers.

Stand-alone applications—Use stand-alone applications to provide other
users with executable versions of VIs. Applications are useful when you
want users to run VIs without installing the LabVIEW development system.
(Windows) Applications have a .exe extension. (Mac OS) Applications have
a .app extension.

Installers—(Windows) Use installers to distribute stand-alone applications,
shared libraries, and source distributions that you create with the
Application Builder. Installers that include the LabVIEW Run-Time Engine
are useful if you want users to be able to run applications or use shared
libraries without installing LabVIEW.

LabVIEW Build Specifications
Use Build Specifications in the Project Explorer window to create build
specifications for source distributions and other types of LabVIEW builds.
A build specification contains all the settings for the build, such as files to
include, directories to create, and settings for directories of VIs.

Tip (Windows and UNIX) Depending upon the nature of your application, it may require
the presence of non-VI files to function correctly. Files commonly needed include a
preferences (.ini) file for the application, and any help files that your VIs call.

System Requirements
Applications that you create with Build Specifications generally have the
same system requirements as the LabVIEW development system. Memory
requirements vary depending on the size of the application created.

You can distribute these files without the LabVIEW development system;
however, stand-alone application and shared library users must have the
LabVIEW Run-Time Engine installed.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-9 LabVIEW Development Course Manual

Implementing Build Specifications
You must create build specifications in the Project Explorer window.
Expand My Computer, right-click Build Specifications, and select New
and the type of build you want to configure from the shortcut menu. Use the
pages in the Source Distribution Properties, Application Properties,
Shared Library Properties, (Windows) Installer Properties, or Zip File
Properties dialog boxes to configure settings for the build specification.
After you define these settings, click the OK button to close the dialog box
and update the build specification in the project. The build specification
appears under Build Specifications. Right-click a specification and select
Build from the shortcut menu to complete the build.

Review the caveats and recommendations for applications and shared
libraries and for installers before you create build specifications with the
Application Builder.

Refer to the LabVIEW Help for more information about the caveats and
recommendations for applications and installers.

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-10 ni.com

Exercise 6-2 Concept: Creating a Stand-Alone Application

Goal
Create a stand-alone application with LabVIEW.

Description
Creating a stand-alone application and an installer simplifies deploying an
application on multiple machines. In order to deploy the application, you
first prepare the code, create an Application (Exe) Build Specification, and
then create an Installer Build Specification.

Set Top-Level Application Window
1. Open the Weather Station UI VI you created from its project file.

Figure 6-2. Front Panel

2. Select File»VI Properties to display the VI Properties dialog box.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-11 LabVIEW Development Course Manual

3. Select Window Appearance from the top pull-down menu.

4. Give the window a name, such as Weather Station.

5. Select Top-level application window. This gives the front panel a
professional appearance when it opens as an executable.

6. Save the VI.

Call the Quit LabVIEW Function
7. Open and modify the block diagram to call the Quit LabVIEW function

when the application finishes.

Figure 6-3. Block Diagram

❑ Place the Quit LabVIEW function on the block diagram so that it is
the last function that is executed. This function quits LabVIEW and
quits the application after it has been built.

❑ Enclose the Quit LabVIEW function with a Flat Sequence structure.

❑ Wire the Simple Error Handler VI to the border of the Sequence
structure to force execution order.

8. Select File»Save All to save all the VIs.

9. Open the front panel and run the VI. When you click the Stop button,
the VI stops and LabVIEW quits.

10. Restart LabVIEW and open Weather Station.lvproj.

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-12 ni.com

Modify File Path
11. Modify the relative path to have the same functionality after the

executable is built by stripping an additional component of the path.

Figure 6-4. Additional Strip Path Function

❑ Open the Initialize Weather Station.vi from the Project
Explorer window.

❑ Switch to the block diagram.

❑ Place an additional Strip Path function on the block diagram.

❑ Wire as shown in Figure 6-4.

❑ Save and close.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-13 LabVIEW Development Course Manual

Application (EXE) Build Specification
12. Right-click Build Specifications in the Project Explorer window and

select New»Application (EXE) from the shortcut menu.

13. Modify the filename of the target and destination directory for the
application in the Application Information category.

❑ Select the Application Information category.

❑ Change the Target filename to WeatherStation.exe.

❑ Enter C:\Exercises\LabVIEW Basics II\Course
Project\Executable in the Application destination directory.

Tip You do not need to create the directory. LabVIEW creates any directories that you
specify.

14. Specify the top-level VI.

❑ Select the Source Files category.

❑ Select the Weather Station UI.vi in the Project Files tree.

❑ Click the arrow next to the Startup VIs listbox to add the selected
VI to the Startup VIs listbox.

❑ Click OK.

15. Right-click the My Application Build Specification that you just
created, and select Build from the shortcut menu.

16. Click Done in the Build Status window.

17. Navigate to C:\Exercises\LabVIEW Basics II\Course
Project\Executable in Windows Explorer and run
WeatherStation. Stop when done.

Installer Build Specification
18. Right-click Build Specifications in the Project Explorer window and

select New»Installer from the shortcut menu.

19. Modify the Installer destination in the Product Information category.

❑ Select the Product Information category.

❑ Enter C:\Exercises\LabVIEW Basics II\Course
Project\Installer as the Installer destination.

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-14 ni.com

20. Specify the Executable Build Specification.

❑ Click the Source Files category.

❑ Select the My Application Build Specification that you created.

❑ Select the Weather Station in the ProgramFilesFolder in the
Destination View tree.

❑ Click the arrow next to the Project View tree to place the executable
and the executable support files under the ProgramFilesFolder in the
Weather Station directory as shown in Figure 6-5.

Figure 6-5. Installer Source Files Category

21. Add the NI LabVIEW Run-Time Engine to the installer by modifying
the Additional Installers category.

❑ Select the Additional Installers category.

❑ Select the NI LabVIEW Run-Time Engine 8.0 installer.

22. Add a Shortcut to the Start menu, by modifying the Shortcuts category.

❑ Select the Shortcuts category.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-15 LabVIEW Development Course Manual

❑ Click the + button to add a shortcut.

❑ Select Weather Station.exe in the Select Target File dialog box.

❑ Click OK.

23. Right-click the Installer Build Specification and select Build from the
shortcut menu.

24. Click Done.

Testing
1. Run the setup.exe file in the C:\Exercises\LabVIEW

Basics II\Course Project\Installer\Volume directory. You
should be guided through a setup process. The executable is created
inside the C:\Program Files\Weather Station directory.

2. To run the application, select Start»Programs»Weather Station»
Weather Station.

End of Exercise 6-2

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-16 ni.com

Summary

• LabVIEW features the Application Builder, which enables you to create
stand-alone executables and installers. The Application Builder is
available in the Professional Development Systems or as an add-on
package.

• Creating a professional, stand-alone application with your VIs involves
understanding the following:

– The architecture of your application

– The programming issues particular to the application

– The application building process

– The installer building process

• LabVIEW has several features to assist you and your coworkers in
developing your projects, such as the VI Revision History window to
record comments and modifications to a VI and the user login, which,
when used with VI Revision History, records who made changes to a VI.
You can access the VI Revision History window at any time by
selecting Tools»VI Revision History.

• The Hierarchy window provides a quick, concise overview of the VIs
used in your project.

Lesson 6 Creating and Distributing Applications

© National Instruments Corporation 6-17 LabVIEW Development Course Manual

Notes

Lesson 6 Creating and Distributing Applications

LabVIEW Development Course Manual 6-18 ni.com

Notes

© National Instruments Corporation A-1 LabVIEW Development Course Manual

A
Additional Information and Resources

This appendix contains additional information about National Instruments
technical support options and LabVIEW resources.

National Instruments Technical Support Options
Visit the following sections of the National Instruments Web site at ni.com
for technical support and professional services.

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For answers and solutions, visit the award-
winning National Instruments Web site for software drivers and
updates, a searchable KnowledgeBase, product manuals, step-by-
step troubleshooting wizards, thousands of example programs,
tutorials, application notes, instrument drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at ni.com/
exchange. National Instruments Application Engineers make sure
every question receives an answer.

For information about other technical support options in your area,
visit ni.com/services or contact your local office at ni.com/
contact.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, National Instruments
Alliance Partner members can help. The NI Alliance Partners joins
system integrators, consultants, and hardware vendors to provide
comprehensive service and expertise to customers. The program ensures
qualified, specialized assistance for application and system
development. To learn more, call your local NI office or visit ni.com/
alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

Appendix A Additional Information and Resources

LabVIEW Development Course Manual A-2 ni.com

Other National Instruments Training Courses
National Instruments offers several training courses for LabVIEW users.
These courses continue the training you received here and expand it to other
areas. Visit ni.com/training to purchase course materials or sign up for
instructor-led, hands-on courses at locations around the world.

National Instruments Certification
Earning an NI certification acknowledges your expertise in working with
NI products and technologies. The measurement and automation industry,
your employer, clients, and peers recognize your NI certification credential
as a symbol of the skills and knowledge you have gained through
experience. areas. Visit ni.com/training for more information about the
NI certification program.

LabVIEW Resources
This section describes how you can receive more information regarding
LabVIEW.

LabVIEW Publications
The following publications offer more information about LabVIEW.

LabVIEW Technical Resource (LTR) Newsletter
Subscribe to LabVIEW Technical Resource to discover tips and techniques
for developing LabVIEW applications. This quarterly publication offers
detailed technical information for novice users and advanced users. In
addition, every issue contains a disk of LabVIEW VIs and utilities that
implement methods covered in that issue. To order the LabVIEW Technical
Resource, contact LTR publishing at (214) 706-0587 or visit
www.ltrpub.com.

LabVIEW Books
Many books have been written about LabVIEW programming and
applications. The National Instruments Web site contains a list of all
the LabVIEW books and links to places to purchase these books.

info-labview Listserve
info-labview is an email group of users from around the world who
discuss LabVIEW issues. The list members can answer questions about
building LabVIEW systems for particular applications, where to get
instrument drivers or help with a device, and problems that appear.

Appendix A Additional Information and Resources

© National Instruments Corporation A-3 LabVIEW Development Course Manual

To subscribe to info-labview, send email to:

info-labview-on@labview.nhmfl.gov

To subscribe to the digest version of info-labview, send email to:

info-labview-digest@labview.nhmfl.gov

To unsubscribe to info-labview, send email to:

info-labview-off@labview.nhmfl.gov

To post a message to subscribers, send email to:

info-labview@labview.nhmfl.gov

To send other administrative messages to the info-labview list manager,
send email to:

info-labview-owner@nhmfl.gov

You might also want to search previous email messages at:

www.searchVIEW.net

The info-labview web page is available at:

www.info-labview.org

© National Instruments Corporation I-1 LabVIEW Development Course Manual

Index

A
Application Builder, 6-8

B
binary

file I/O, 5-2
build specifications, 6-8
building

applications, 6-8
shared libraries, 6-8
stand-alone applications, 6-8

C
certification (NI resources), A-2
checklist

refactoring, 3-34
common operations, identifying, 3-25
conventions used in the manual, ix
course

conventions used in the manual, ix
goals, viii
requirements for getting started, vii
software installation, vii

D
diagnostic tools (NI resources), A-1
documentation (NI resources), A-1
drivers (NI resources), A-1

E
examples (NI resources), A-1

F
file I/O

binary files, 5-2
text files, 5-2

formats for file I/O
binary files, 5-2
text files, 5-2

functional global variable
using for timing, 2-13

G
global variables

functional global variables
timing, 2-13

H
help, technical support, A-1

I
installers, 6-8
installing the course software, vii
instrument drivers (NI resources), A-1

K
KnowledgeBase, A-1

L
labeling

global variables, 2-6
local variables, 2-3

M
master/slave design pattern

using notifiers, 2-33

Index

LabVIEW Development Course Manual I-2 ni.com

N
National Instruments support and services,

A-1
NI Certification, A-2
notifiers, master/slave design pattern, 2-33

P
programming examples (NI resources), A-1

R
reading

variables, 2-3
refactoring

block diagram organization, 3-23
checklist, 3-34
common issues, 3-23
complicated algorithms, 3-25
duplicated logic, 3-25
for dataflow, 3-25
icons, 3-23
object names, 3-23
reducing block diagram size, 3-26
unnecessary logic, 3-24
versus performance improvement, 3-3
when to, 3-4

requirements for getting started, vii

S
shared libraries, 6-8
software (NI resources), A-1
source distributions, 6-8
stand-alone applications, 6-8
support, technical, A-1

T
technical support, A-1
text files

file I/O, 5-2

timing
functional global variable, 2-13
software control

Get Date/Time in Seconds, 1-16
training (NI resources), A-2
troubleshooting (NI resources), A-1

W
Web resources, A-1
writing, variables, 2-3

Z
zip files, 6-8

Course Evaluation

Course ___

Location ___

Instructor ___ Date ____________________________________

Student Information (optional)
Name __

Company ___ Phone ___________________________________

Instructor
Please evaluate the instructor by checking the appropriate circle. Unsatisfactory Poor Satisfactory Good Excellent

Instructor’s ability to communicate course concepts ❍ ❍ ❍ ❍ ❍

Instructor’s knowledge of the subject matter ❍ ❍ ❍ ❍ ❍

Instructor’s presentation skills ❍ ❍ ❍ ❍ ❍

Instructor’s sensitivity to class needs ❍ ❍ ❍ ❍ ❍

Instructor’s preparation for the class ❍ ❍ ❍ ❍ ❍

Course
Training facility quality ❍ ❍ ❍ ❍ ❍

Training equipment quality ❍ ❍ ❍ ❍ ❍

Was the hardware set up correctly? ❍ Yes ❍ No

The course length was ❍ Too long ❍ Just right ❍ Too short

The detail of topics covered in the course was ❍ Too much ❍ Just right ❍ Not enough

The course material was clear and easy to follow. ❍ Yes ❍ No ❍ Sometimes

Did the course cover material as advertised? ❍ Yes ❍ No

I had the skills or knowledge I needed to attend this course. ❍ Yes ❍ No If no, how could you have been

better prepared for the course? __

What were the strong points of the course? __

What topics would you add to the course? ___

What part(s) of the course need to be condensed or removed? __

What needs to be added to the course to make it better? __

How did you benefit from taking this course? __

Are there others at your company who have training needs? Please list. ____________________________________

Do you have other training needs that we could assist you with? ___

How did you hear about this course? ❍ NI Web site ❍ NI Sales Representative ❍ Mailing ❍ Co-worker

❍ Other ___

